
XCSoar 7
the open-source glide computer

Developer Manual

May 14, 2021
For XCSoar version 7.7

http://www.xcsoar.org

http://www.xcsoar.org

Contents

1 Introduction 7

2 Compiling XCSoar 8
2.1 Getting the Source Code 8
2.2 Requirements 8
2.3 Target-specific Build Instructions 9

2.3.1 Compiling for Linux/UNIX 9
2.3.2 Compiling for Android 10
2.3.3 Compiling for Windows 11
2.3.4 Compiling for iOS and macOS 11
2.3.5 Compiling for macOS (with Homebrew) . 12
2.3.6 Compiling on the Raspberry Pi 4 12
2.3.7 Compiling for the Raspberry Pi 1-3 12
2.3.8 Compiling for the Cubieboard 13
2.3.9 Compiling for Kobo E-book Readers . . . 13
2.3.10 Editing the Manuals 14

2.4 Options . 15
2.4.1 Parallel Build 15
2.4.2 Optimised Build 15
2.4.3 Compiling with ccache 15

2.5 Using a build VM with Vagrant 16

3 Policy 17
3.1 Git Work Flow 17

3.1.1 Version Numbering 17
3.1.2 Git Repository Enduring Branches 17

3.2 Writing Patches 17
3.2.1 GitHub 18
3.2.2 Developers’ Mail List 18
3.2.3 Basic Patch Requirements 18

3.3 Code Style . 19
3.4 C++ . 20

3.4.1 Other rules 21
3.5 Graphical User Interface 21

3.5.1 Letter Cases 21

4 Architecture 23

2

XCSoar Developer Manual CONTENTS

4.1 Source Organisation 23
4.2 Threads and Locking 24

4.2.1 Threads 24
4.2.2 Locking 25

4.3 Accessing Sensor Data 26

5 The build system 28
5.1 Linker parameters 28

6 Developing 29
6.1 Debugging XCSoar 29

7 User interface guidelines 30
7.1 General . 30

7.1.1 General colour conventions 31
7.1.2 Displayed data 31

7.2 Dialogs and menu buttons 31
7.2.1 Colors 31
7.2.2 dialogue types and navigation buttons . . 32
7.2.3 dialogue button placement and size 32
7.2.4 Usability 33

7.3 Main graphics 33
7.3.1 Colors 33
7.3.2 Pen styles 34
7.3.3 Map overlays 34

7.4 Terminology 34
7.4.1 Glide Ratio 34

8 Lua Scripting 36
8.1 Learning Lua 36
8.2 Running Lua 37
8.3 Lua Standard Libraries 37
8.4 XCSoar’s Lua API 38

8.4.1 The Blackboard 38
8.4.2 The Map 39
8.4.3 Airspace 40
8.4.4 Task . 40
8.4.5 Settings 42
8.4.6 Wind . 43
8.4.7 Logger 44
8.4.8 Tracking 44
8.4.9 Replay 45
8.4.10 Timers 45
8.4.11 Legacy 46

9 File formats 47

3

XCSoar Developer Manual CONTENTS

9.1 Input Events 47
9.1.1 Introduction 47
9.1.2 Defaults and Files 49
9.1.3 File format 49
9.1.4 Event order 50
9.1.5 Event list 50
9.1.6 Modes 51
9.1.7 Keys . 52
9.1.8 Glide Computer Events 53

9.2 Map Data file formats 54
9.2.1 Map information 54
9.2.2 Terrain data files 54
9.2.3 Waypoints 54
9.2.4 Topography data 54

A Setting up a development environment based on
linux 60
A.1 Download source code 60
A.2 Use provisioning scripts 60
A.3 Optional: Eclipse IDE 61
A.4 Optional: modern LaTeX editor for editing the

Manual . 62

B GNU General Public License 64

4

Preface

This manual applies to XCSoar version 7.0. The authors re-
serve the right to update this manual as enhancements are made
throughout the life of this product.

Warnings and precautions
IT IS THE USER’S RESPONSIBILITY TO USE THIS SOFT-
WARE PRUDENTLY. THIS SOFTWARE IS INTENDED TO BE
USED ONLY AS A NAVIGATION AID AND MUST NOT BE
USED FOR ANY PURPOSE REQUIRING PRECISE MEASURE-
MENT OF DIRECTION, DISTANCE, LOCATION, OR TOPOG-
RAPHY. THIS SOFTWARE SHOULD NOT BE USED AS AN
AID TO DETERMINE GROUND PROXIMITY FOR AIRCRAFT
NAVIGATION. THIS SOFTWARE SHOULD NOT BE USED AS
A TRAFFIC COLLISION AVOIDANCE SYSTEM.

Legal notices
Software license agreement

This software is released according to the GNU General Public Li-
cense Version 2. See Appendix B for the full text of the agreement
and warranty notice.

Limited liability

In no event shall XCSoar, or its principals, shareholders, officers,
employees, affiliates, contractors, subsidiaries, or parent organi-
zations, be liable for any incidental, consequential, or punitive
damages whatsoever relating to the use of the Product.

Disclaimer

This product, and all accompanying files, data and materials, are
distributed “as is” and with no warranties of any kind, whether
express or implied. This product is used entirely at the risk of
the user. Although great care has been taken to eliminate de-
fects during its development it is not claimed to be fault-free.
No claims are made regarding its correctness, reliability or fitness

XCSoar Developer Manual CONTENTS

for any particular purpose. The XCSoar project developers and
contributors shall not be liable for errors contained herein or for
incidental or consequential damages, loss of data or personal in-
jury in connection with furnishing, performance, or use of this
material.

6

1 Introduction

2 Compiling XCSoar

The make command is used to launch the XCSoar build process.
You can learn more about the build system internals in chapter 5.

Most of this chapter describes how to build XCSoar on Linux,
with examples for Debian/Ubuntu. A cross-compiler is used to
build binaries for other operating systems (for example Android
and Windows).

2.1 Getting the Source Code
The XCSoar source code is managed with git. It can be down-
loaded with the following command:

git clone git://github.com/XCSoar/XCSoar

To update your repository, type:

git pull

To update third-party libraries used by XCSoar (such as Boost),
type:

git submodule init
git submodule update

For more information, please read to the git documentation.

2.2 Requirements
The following is needed for all targets:

• GNU make

• GNU compiler collection (gcc), version 6 or later or clang/L-
LVM 4.0 (with ”make CLANG=y”)

• GNU gettext

• rsvg

• ImageMagick 6.4

• xsltproc

http://git-scm.com/
http://www.boost.org/
http://librsvg.sourceforge.net/)
http://www.imagemagick.org/
http://xmlsoft.org/XSLT/xsltproc2.html

XCSoar Developer Manual 2. COMPILING XCSOAR

• Info-ZIP

• Perl and XML::Parser

• FFmpeg

The following command installs these on Debian:

sudo apt-get install make \
 librsvg2-bin xsltproc \
 imagemagick gettext ffmpeg \
 git quilt zip \
 m4 automake \
 ttf-bitstream-vera fakeroot

2.3 Target-specific Build Instructions
2.3.1 Compiling for Linux/UNIX

The following additional packages are needed to build for Linux
and similar operating systems:

• zlib

• CURL

• Lua

• libinput (not required when using Wayland or on the KOBO)

• SDL

• SDL_ttf

• libpng

• libjpeg

• OpenGL (Mesa)

• to run XCSoar, you need one of the following fonts (De-
bian package): DejaVu (fonts-dejavu), Roboto (fonts-
roboto), Droid (fonts-droid), Freefont (fonts-freefont-
ttf)

The following command installs these on Debian:

sudo apt-get install make g++ \
 zlib1g-dev \
 libsodium-dev \
 libfreetype6-dev \
 libpng-dev libjpeg-dev \
 libtiff5-dev libgeotiff-dev \

9

http://www.info-zip.org/
http://www.zlib.net/
http://curl.haxx.se/
http://www.lua.org/
https://www.freedesktop.org/wiki/Software/libinput/
http://www.libsdl.org/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libpng.org/
http://libjpeg.sourceforge.net/

XCSoar Developer Manual 2. COMPILING XCSOAR

 libcurl4-openssl-dev \
 libc-ares-dev \
 liblua5.2-dev lua5.2-dev \
 libxml-parser-perl \
 libasound2-dev \
 librsvg2-bin xsltproc \
 imagemagick gettext \
 mesa-common-dev libgl1-mesa-dev libegl1-mesa-dev \
 libinput-dev \
 fonts-dejavu

To compile, run:

make

You may specify one of the following targets with TARGET=x:

UNIX regular build (the default setting)
UNIX32 generate 32 bit binary
UNIX64 generate 64 bit binary
OPT alias for UNIX with optimisation and no debugging

2.3.2 Compiling for Android

For Android, you need:

• Android SDK level 26

• Android NDK r22b

• Ogg Vorbis

• Java JDK

sudo apt-get install default-jdk-headless vorbis-
tools adb

The required Android SDK components are:

• Android SDK Build-Tools 28.0.3

• SDK Platform 26

These can be installed from the Android Studio SDK Manager,
or using the SDK command line tools:

tools/bin/sdkmanager \
 "build-tools;28.0.3" \
 "platforms;android-26"

10

http://developer.android.com/sdk/
http://developer.android.com/sdk/ndk/
http://www.vorbis.com/

XCSoar Developer Manual 2. COMPILING XCSOAR

The Makefile assumes that the Android SDK is installed in
~/opt/android-sdk-linux and the NDK is installed in ~/opt/android-
ndk-r22b. You can use the options ANDROID_SDK and ANDROID_NDK
to override these paths.

Load/update the IOIO source code:

git submodule init
git submodule update

To compile, run:

make TARGET=ANDROID

Use one of the following targets:

ANDROID for ARM CPUs (same as ANDROID7)
ANDROID7 for ARMv7 CPUs
ANDROID7NEON with NEON extension
ANDROID86 for x86 CPUs
ANDROIDMIPS for MIPS CPUs
ANDROIDFAT “fat” package for all supported CPUs

2.3.3 Compiling for Windows

To cross-compile to (desktop) Windows, you need Mingw-w64.

The following command installs it on Debian:

sudo apt-get install g++-mingw-w64

To compile for 32 bit Windows, run:

make TARGET=PC

Use one of the following targets:

PC 32 bit Windows (i686)
WIN64 Windows x64 (amd64 / x86-64)

2.3.4 Compiling for iOS and macOS

On macOS, the following tools are required:

• png2icns from libicns to build for macOS

• dpkg to build the iOS IPA package

• mkisofs to build the macOS DMG package

To compile for iOS / AArch64, run:

make TARGET=IOS64 ipa

11

http://www.arm.com/products/processors/technologies/neon.php
http://mingw-w64.org
http://icns.sourceforge.net
https://alioth.debian.org/projects/dpkg
http://cdrecord.org/private/cdrecord.html

XCSoar Developer Manual 2. COMPILING XCSOAR

To compile for iOS / ARMv7, run:

make TARGET=IOS32 ipa

To compile for macOS / x86_64, run:

make TARGET=OSX64 dmg

2.3.5 Compiling for macOS (with Homebrew)

Install the required Homebrew packages:

brew install automake autoconf libtool \
 imagemagick ffmpeg librsvg quilt pkg-config

Then compile:

make dmg

2.3.6 Compiling on the Raspberry Pi 4

Install additional dependencies:

apt-get install libdrm-dev libgbm-dev \
 libgles2-mesa-dev \
 libinput-dev

Compile:

make

2.3.7 Compiling for the Raspberry Pi 1-3

You need an ARM toolchain. For example, you can use the Debian
package g++-arm-linux-gnueabihf:

make TARGET=PI

To optimize for the Raspberry Pi 2 (which has an ARMv7 with
NEON instead of an ARMv6):

make TARGET=PI2

These targets are only used for cross-compiling on a (desktop)
computer. If you compile on the Raspberry Pi, the default target
will auto-detect the Pi.

12

XCSoar Developer Manual 2. COMPILING XCSOAR

2.3.8 Compiling for the Cubieboard

To compile, run:

make TARGET=CUBIE

This target is only used for cross-compiling on a (desktop) com-
puter. If you compile on the Cubieboard, the default target will
auto-detect the Cubieboard.

2.3.9 Compiling for Kobo E-book Readers

An ARM toolchain is bootstrapped during the build automatically.

To compile XCSoar, run:

make TARGET=KOBO

To build the kobo install file KoboRoot.tgz, you need the follow-
ing Debian packages:

sudo apt-get install fakeroot ttf-bitstream-vera

Then compile using this command:

make TARGET=KOBO output/KOBO/KoboRoot.tgz

For this, you need the Debian package libc6-armhf-cross.

Building USB-OTG Kobo Kernel

To build a USB-OTG capable kernel for the Kobo, clone the git
repository:

git clone git://git.xcsoar.org/xcsoar/max/linux.git

Check out the correct branch. For the Kobo Mini, this is the
“kobo” branch, for the Kobo Glo HD, the branch is called “kobo-
glohd”, and for the Kobo Aura 2, use the branch “kobo-aura2”.

git checkout kobo

Configure the kernel using the configuration files from the kobo/kernel
directory in XCSoar’s git repository. For the Kobo Mini, install
a gcc 4.4 cross compiler, for example in /opt. For the Kobo Glo
HD and Aura 2, install a gcc 4.6 cross compiler

To compile a kernel image for the Kobo Mini, type:

make \
 CROSS_COMPILE=/opt/arm-2010q1/bin/arm-none-linux-gnueabi- \
 ARCH=arm uImage

13

http://openlinux.amlogic.com:8000/download/ARM/gnutools/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
https://launchpad.net/gcc-arm-embedded/4.6/4.6-2012-q4-update/+download/gcc-arm-none-eabi-4_6-2012q4-20121016.tar.bz2

XCSoar Developer Manual 2. COMPILING XCSOAR

To compile a kernel image for the Kobo Glo HD, type:

make \
 CROSS_COMPILE=/opt/gcc-arm-none-eabi-4_6-2012q4/bin/arm-
none-eabi- \
 ARCH=arm uImage

Copy uImage to the Kobo. Kernel images can be installed with
the following command:

dd if=/path/to/uImage of=/dev/mmcblk0 bs=512 seek=2048

Note that XCSoar’s rcS script may overwrite the kernel image
automatically under certain conditions. To use a new kernel per-
manently, install it in /opt/xcsoar/lib/kernel. Read the file
kobo/rcS to find out more about this.

To include kernel images in KoboRoot.tgz, copy uImage.otg,
uImage.kobo, uImage.glohd.otg, uImage.glohd, uImage.aura2
and uImage.aura2.otg to /opt/kobo/kernel.

2.3.10 Editing the Manuals

The XCSoar documententation, including the Developer Manual
that you are reading right now, is written using the TeX markup
language. You can edit the source files with any text editor,
although a specific TeX editor (e.g. LateXila) makes it easier.

Source files are located in the en, fr, de, pl subdirectories of the
doc/manual directory. The Developer manual is in the doc/man-
ual/en directory. The generated files are put into the output/-
manual directory.

To generate the PDF manuals, you need the TexLive package,
plus some European languages.

The following command installs these on Debian:

sudo apt-get install texlive \
 texlive-latex-extra \
 texlive-luatex \
 texlive-lang-french \
 texlive-lang-polish \
 texlive-lang-german \
 texlive-lang-portuguese \
 liblocale-po-perl

The documentation is distributed as PDF files. Generating the
PDFs from the TeX files is done by typing:

14

XCSoar Developer Manual 2. COMPILING XCSOAR

make manual

A lot of warnings are generated... this is normal. Check for the
presence of PDF files to ensure that the generation process was
successful.

2.4 Options
2.4.1 Parallel Build

Most contemporary computers have multiple CPU cores. To take
advantage of these, use the make -j option:

make -j12

This command launches 12 compiler processes at the same time.

Rule of thumb: choose a number that is slightly larger than the
number of CPU cores in your computer. 12 is a good choice for
a computer with 8 CPU cores.

2.4.2 Optimised Build

By default, debugging is enabled and compiler optimisations are
disabled. The resulting binaries are very slow. During develop-
ment, that is helpful, because it catches more bugs.

To produce optimised binaries, use the option DEBUG:

make DEBUG=n

Be sure to clean the output directory before you change the DEBUG
setting, because debug and non-debug output files are not com-
patible.

The convenience target OPT is a shortcut for:

TARGET=UNIX DEBUG=n TARGET_OUTPUT_DIR=output/OPT

It allows building both debug and non-debug incrementally, be-
cause two different output directories are used.

2.4.3 Compiling with ccache

To speed up the compilation of XCSoar we can use ccache to
cache the object files for us. All we have to do is install ccache
and add USE_CCACHE=y to the make command line:

sudo apt-get install ccache
make TARGET=UNIX USE_CCACHE=y

15

XCSoar Developer Manual 2. COMPILING XCSOAR

2.5 Using a build VM with Vagrant
An easy way to install a virtual machine with all build dependen-
cies required for various targets (e.g. Linux, Windows, Android
and Kobo), is using Vagrant.

The following is needed to install the VM with Vagrant:

• Vagrant

• VirtualBox

The Vagrantfile can be found in the ide/vagrant subfolder of
the XCSoarsource. To set up the VM, and connect to it, type:

cd ide/vagrant
vagrant up
vagrant ssh

The XCSoar source directory on the host is automatically mounted
as a shared folder at /xcsoar-host-src in the VM. For perfor-
mance reasons, it is not recommended to compile directly in this
folder. A git clone of this directory is automatically created in the
home directory (/xcsoar-src), which should be used instead.
In this git clone, the XSoar source directory on the host is pre-
configured as a git remote named “host”, and the XCSoar master
directory is preconfigured as a remote named “master”.

To shutdown the VM, type:

vagrant halt

16

https://www.vagrantup.com/
https://www.virtualbox.org/

3 Policy

3.1 Git Work Flow
3.1.1 Version Numbering

Each release of XCSoar is denoted by a unique version number.
A version number consists three sequential numerical fields sep-
arated a period and prefixed by a ’v’. The significance of the
three fields are <major>.<minor>.<patch>. So, for instance,
the version number ’v7.1.3’ indicates XCSoar major version 7,
minor version 1, and patch 3.

Release versions are determined and maintained by the release
manager.

3.1.2 Git Repository Enduring Branches

At any time the XCSoar contains two enduring branches. The
principle enduring branch is ’master’. The lifetime of this branch
is unbounded. The second enduring branch is the current minor
version branch. The lifetime of this branch is the lifetime of the
current minor version. The name of the minor version branch is
in the form ’v<major>.<minor>.x’ So, for instance, the current
minor branch may be called ’v7.1.x’.

With the commencement of a new minor version the release man-
ager will create the required branch. The old minor branch will
be retired. All XCSoar releases are made from the current minor
branch.

The master branch serves as the development branch for the next
minor release (which may also be the first minor of the next major
release).

Developers should commit changes for the next minor release to
the master branch. Bug fixes of the current minor release should
be committed to the current minor branch, in preparation for the
next patch release.

3.2 Writing Patches
There are two methods to summit patches to the upstream XC-
Soar repository.

XCSoar Developer Manual 3. POLICY

3.2.1 GitHub

The XCSoar repository is currently hosted at XCSoar GitHub
repository. GitHub provides a method for submitting patches us-
ing their Web interface. The easiest way to use this method is to
make another XCSoar repository by ’forking’ from ’XCSoar/XC-
Soar’. Make sure that your local repository is up to date with
the upstream XCSoar/XCSoar repository. Then make a feature
branch from the master or current minor branch as appropriate
for the change you are making and commit the changes to that
branch. To make the upstream merge easier it is best to re base
this feature branch with the appropriate upstream branch from
time to time.

When ready to submit the feature branch to the upstream push
your local repository to your GitHub XCSoar repository and use
the GitHub Web interface to make a ’pull request’ of your feature
branch to XCSoar/SCSoar.

3.2.2 Developers’ Mail List

The second method is to submit patches or git pull requests to
the developer mailing list (xcsoar-devel@lists.sourceforge.net).

Patch files can be generated by running

git diff > patch

3.2.3 Basic Patch Requirements

A patch should be self-explanatory, it needs a good description.
The subject line specifies the subsystem/library name and a brief
description of what is changed, followed by an empty line. Then
write a longer description if needed, and explain why this change
is needed.

Each patch must compile and must not introduce a regression (as
far as we know at the time).

Each patch must be self-contained and should only change one
thing. Split larger patches into smaller pieces. Don’t refactor and
add/modify/remove features in the same patch.

Don’t rewrite code unless you need to. Migrate incrementally to
a new concept. Keep patches small and easy to understand.

18

https://github.com/XCSoar/XCSoar
https://github.com/XCSoar/XCSoar

XCSoar Developer Manual 3. POLICY

3.3 Code Style
79 columns, reasonable exceptions allowed. Indent 2 spaces, no
tabs. No indent for namespace blocks (a compromise to avoid
excessive indentation).

Comments: write enough code comments (in English). All workarounds
must be documented. Everybody must be able to understand your
code, even when you’re gone. Don’t abuse multiple single-line
comments (“//”) to write mult-line comments.

API documentation: non-trivial functions should be documented
in a doxygen comment.

Names: class/function names in CamelCase (not camelCase);
attributes/variables lower case, separated with underscore (e.g.
foo_bar); constants (including enum values) all upper case (e.g.
FOO_BAR).

Exception: when a foreign API is being mimicked (e.g. STL
containers), we adopt its naming conventions.

Files: *.cpp and *.hpp for C++. Files should be named after the
main class which is provided. Each class should have a separate
source file and a separate header. UNIX text format.

Be const-correct. Use constexpr instead of const whenever
possible.

Use static whenever possible. Functions and global variables
that are only used in one source file should not be exported.
Methods that do not use any instance method/variable should be
static to avoid the overhead of passing the implicit this param-
eter.

Make methods virtual only after careful consideration. A de-
structor should only be virtual if necessary. All overrides must use
the override keyword. Use final often.

Compile with WERROR=y and fix all warnings.

Don’t write large functions. Split them up when they become too
large.

Avoid dynamic allocation. Dynamic allocation means overhead,
more locking and heap fragmentation. Use StaticArray and
StaticString if possible.

Asterisks belong to the variable name, not to the type name.
Consider “Foo* a, b”. “Foo *a, b” or “Foo *a, *b” is easier
to understand.

19

XCSoar Developer Manual 3. POLICY

Some sample code to demonstrate our code style:

/**
* API documentation for this class.
*/

struct TheStruct {
unsigned an_attribute;
bool second_attribute;

TheStruct();

/**
* API documentation for this method.
*
* @param foo documentation for this parameter
* @return documentation for the return value
*/

bool TheMethod(int foo);
};

TheStruct::TheStruct()
:an_attribute(0),
second_attribute(true)

{
}

static bool
FooBar(int a_parameter, unsigned another_parameter,

const TheStruct *next_row)
{
switch (a_parameter) {
case 0:
break;

}

if (a_parameter == 2 && another_parameter == 3 &&
next_row != NULL)

return true;

return a_parameter == 42;
}

3.4 C++
XCSoar is written in C++17.

20

XCSoar Developer Manual 3. POLICY

XCSoar’s standard compilers are gcc (at least version 6) and
clang (at least version 4.0).

Avoid preprocessor macros, because they are obscure, error prone,
not type-safe, hard to read and hard to debug. Use inline
functions and constexpr variables instead.

3.4.1 Other rules

In a class declaration, attributes come first, then constructor/de-
structor, and finally the methods. Having all attributes in one
place gives a good overview of the nature of a class.

Avoid expensive and bloated STL containers if there are cheaper
solutions (e.g. StaticArray, StaticString if the maximum
size is predictable).

Avoid template hell. Keep templates readable. Keep in mind that
excessive template use may bloat the binary.

3.5 Graphical User Interface
3.5.1 Letter Cases

Following the guidline should prevent the GUI from mixtures of
“ON” and “On” text elements, and lead to a systematic GUI text
presentation. The goal is to recognize GUI text fast and reliable.

Captions : Captions (button captions, windows titles) to use capital-
ization. E.g. ,“Pan On”, “The Display Of ...”.

Abbreviations : Generally known abbreviation use upper case like “MC”,
“ETA”, “V”; or they can use CamelCase, especially when
using synthetic words like “GoTo”, “InfoBox”. Abbreviated
words by simply cutting the end of the word needs a dot,
e.g. “Max. temp.”

Plain text : Longer help texts are to write like prose: “This is the help
page for ...”.

Labels : Label text has the least systematic constraints:

• Captions for text (input) fields, e.g. “Wing loading”

• Info text on widgets. E.g. “No data” on an empty
analysis page.

• Label text for radio or check boxes.

• Selections on Combo-boxes, selectors, Pull-down menus.

21

XCSoar Developer Manual 3. POLICY

All those should go like prose, whereas exceptions might be
meaningful.

Gauge caption : Also the appearance of the gauge caption should be cov-
ered with that. They are currently mapped to upper case
all over. I think the most readable also here is a Camel-
Case approach. E.g. to distinct “WP Dist”, “WP AltD”,
and “WP AltR”. Another good example would be MAC-
CREADY, which should be MacCready, or just MC.

Units : Units have their own specific appearance. A profound paper
is http://physics.nist.gov/cuu/pdf/checklist.pdf we could
just refer to.

22

4 Architecture

This chapter describes XCSoar’s internal code architecture.

4.1 Source Organisation
XCSoar’s source code is stored in the src directory. This section
tries to give a rough overview where you can find what.

• Util/: generic C++ utilities that do not depend on exter-
nal libraries, such as data structures, string operations

• Math/: math data types (fixed-point math, angles) and
generic formulas

• Geo/: geographic data structures and formulas

• Formatter/: code that formats internal values to strings

• Units/: conversion from SI units (“System” units) to con-
figured user units

• NMEA/: data structures for values parsed from NMEA

• Profile/: user profiles, loading from and saving to

• IGC/: support for the IGC file format

• Logger/: all loggers (NMEA, IGC, flights)

• Thread/: multi-threading support (OS specific)

• Screen/: base library for the graphical user interface

• Renderer/: various graphical renderers, for map and anal-
ysis

• MapWindow/: the map

• Form/: modal dialogs and their controls (based on the
screen library)

• Dialogs/: modal dialogs implementations (based on the
form library)

• Net/: networking code (OS specific)

• Operation/: generic code to support cancellable long-
running operations

XCSoar Developer Manual 4. ARCHITECTURE

• Android/: code specific to Android (the native part only;
Java code is in android/src/

• Engine/PathSolvers/: an implementation of Dijkstra’s
path finding algorithm, for task and contest optimisation

• Engine/Airspace/: airspace data structures and airspace
warnings

• Engine/Waypoint/: waypoint data structures

• Engine/GlideSolvers/: a MacCready implementation

• Engine/Task/: task data structures and calculations

• Engine/Contest/: contest optimisation

• Engine/Route/: the route planner (airspace and terrain)

4.2 Threads and Locking
4.2.1 Threads

XCSoar runs on multiple threads, to make the UI responsive but
still allow expensive background calculations.

This is how it looks like on Windows and Linux/SDL (software
rendering):

UI thread DrawThread
redraw (Pan)

BufferCanvas

CalcThread

re
su

lts

MergeThread

re
su

lts

Device

sensor data

Device 2

sensor data

I/O thread

da
ta

sensor data

The UI thread is the main thread. It starts the other threads and
is responsible for the UI event loop. No other thread is allowed

24

XCSoar Developer Manual 4. ARCHITECTURE

to manipulate windows. The UI thread has a timer which does
regular house keeping twice per second (ProcessTimer.cpp).

The calculation thread (CalculationThread.cpp, GlideCom-
puter*.cpp) does all the expensive calculations in background.
It gets data from the devices (through MergeThread) and for-
wards it together with calculation results to the drawing thread
and the main thread.

Each device has its own thread (SerialPort.cpp). This is
needed because Windows CE does not support asynchronous COMM
port I/O. The thread is stopped during task declaration (which
happens in the UI thread).

When new data arrives on the serial port, the MergeThread gets
notified, which will merge all sensor values into one data structure.
It will then run cheap calculations, and forwards everything to the
CalculationThread.

With OpenGL, the map is rendered live without a buffer. There
is no DrawThread.

On Android, the UI thread is not the main thread - the main
thread is implemented in Java, managed by Android itself. The
UI thread listens for events which the Java part drops into the
event queue (NativeView.java and others). The internal GPS
does not need a thread, it is implemented with Java callbacks.
For Bluetooth I/O, there are two threads implemented in Java
(InputThread.java and OutputThread.java, managed by BluetoothHelper.java).

4.2.2 Locking

Some data structures are rarely modified. There is no lock for
them. For a modifications, all threads must be suspended. Ex-
ample: waypoints, airspaces.

Other data structures are modified so often that correct locking
would be too much overhead. Each thread and each instance has
its own copy. The lock needs to be obtained only for making
the private copy. The private copy can be used without locking.
Example: NMEA_INFO, DERIVED_INFO.

There are objects which are too expensive to copy. Normal locking
applies to them. We have a template class called Guard to enforce
proper read/write locking. Example: the task.

25

XCSoar Developer Manual 4. ARCHITECTURE

4.3 Accessing Sensor Data
Much of XCSoar deals with obtaining sensor data and visualising
it.

Suppose you want to write a dialog that needs the current GPS lo-
cation, where do you get it? The short and simple answer is: from
CommonInterface::Basic() (the InterfaceBlackboard). Ex-
ample:

#include "Interface.hpp"

...
const auto &basic = CommonInterface::Basic();
if (basic.location_available)
current_location = basic.location;

This is true for the main thread (aka the “user interface thread”).
Other threads must not use the Interface.hpp library, because
the InterfaceBlackboard is not protected in any way. It con-
tains copies of various data structures just for the main thread.

This is how sensor data moves inside XCSoar:

MergeThread
BasicComputer

DeviceBlackboard

Device 1

NMEAInfo

Device 2

NMEAInfo

CalcThread
GlideComputer

GlideComputerBlackboard

M
oreD

ata

UI thread
InterfaceBlackboard
BlackboardListener

D
erivedInfo

DrawThread
MapWindow

MapWindowBlackboard
DerivedInfo

The device driver parses input received from its device into its own
NMEAInfo instance inside DeviceBlackboard (i.e. per_device_data).
Then it wakes up the MergeThread to merge the new data into
the central NMEAInfo instance. The MergeThread hosts the

26

XCSoar Developer Manual 4. ARCHITECTURE

BasicComputer which attempts to calculate missing data (for
example, derives vario from GPS altitude).

The CalculationThread wakes up and receives the MoreData
object from DeviceBlackboard. Here, expensive calculations are
performed (GlideComputer: task engine, airspace warnings, ...),
resulting in a DerivedInfo object. The CalculationThread
runs no more than twice per second.

Finally, the UI thread wakes up and receives MoreData and DerivedInfo
via DeviceBlackboard. This updates InfoBoxes and other UI el-
ements. On Windows, the map is drawn in a separate thread, so
there’s another layer.

Let’s get back to the question: where do I get sensor data? That
depends on who you are:

• you are the user interface: (InfoBoxes, dialogs, any Window
callback): InterfaceBlackboard (see above). To get
notified on changes, register a BlackboardListener (and
don’t forget to unregister it).

• you are the MapWindow: depends! If you’re being called
from OnPaintBuffer (i.e. inside the DrawThread), you
must use the MapWindowBlackboard, all others must use
the InterfaceBlackboard.

• you are a “computer” library: you will get the values as a pa-
rameter. Don’t try to use the GlideComputerBlackboard
directly.

• you are a device driver: implement the method OnSensorUpdate
or OnCalculatedUpdate if you need to know values from
other devices or calculation results.

• everybody else may use the DeviceBlackboard, but be
sure to lock it while using its data.

27

5 The build system

A big plain Makefile is used to control the XCSoar build. GNU
extensions are allowed.

This chapter describes the internals of our build system; for in-
structions on compiling XCSoar, see chapter 2.

5.1 Linker parameters
The following variables (or variable suffixes) appear in the Makefile
(conforming to automake conventions):

LDFLAGS : Linker flags, such as -static or -Wl,..., but not -l.

LDLIBS : All -l flags, e.g. -lGL.

LDADD : Path names of static libraries, e.g. /usr/lib/libz.a.

Search directories (-L) are technically linker “flags”, but they are
allowed in LDLIBS, too.

6 Developing

6.1 Debugging XCSoar
The XCSoar source repository contains a module for the GNU
debugger (gdb). It contains pretty-printers for various XCSoar
types, including Angle, GeoPoint and others. These are help-
ful when you print values in the debugger. To use it, start the
debugging session and load the module:

$ gdb -ex "source tools/gdb.py" output/UNIX/bin/xcsoar
(gdb) run

The module will automatically convert fixed-point to floating
point, radian angles to degrees and more. You can now do fancy
stuff like:

(gdb) p basic.location
$1 = GeoPoint(7.93911242887 51.1470221074)
(gdb) p basic.date_time_utc
$2 = DateTime(2012/12/23 21:41:57)
(gdb) p basic.track
$3 = 55.2254197961
(gdb) p basic.external_wind
$4 = GeoVector::ZERO
(gdb) p current_leg.vector_remaining
$5 = GeoVector(267.899420345 107957.109724)

7 User interface guidelines

7.1 General
• Minimise the number of colours, and re-use colour groups

already defined.

• Too much use of colour where it is not required serves only
to reduce the effectiveness of bright colours for important
items.

• High colour saturation elements should be reserved for high
importance items

• High contrast against background should be reserved for
high importance items

• Attempt to adopt colours that are intuitive based the func-
tion of the item

• Minimise the clutter where possible — readibility is essential
for use in flight

• Use colours defined in Graphics according to functional
name, not their actual colour.

• Try to maintain consistent use of colours in all uses of that
function, such as dialogue graphics as well as map overlays
and infoboxes.

• Text should always be monochrome.

Use aviation conventions or adopt best aviation human factors
standards where possible, in particular:

• ICAO Internation Standards and Recommended Practices,
Annex 4 to the Convention on International Civil Aviation
(Aeronautical Charts).

• NASA Colour Usage recommendations and design guide-
lines: http://colorusage.arc.nasa.gov/

• DOT/FAA/AR-03/67 Human Factors Considerations in the
Design and Evaluation of Electronic Flight Bags (EFBs)
http://www.volpe.dot.gov/hf/aviation/efb/docs/efb_version2.pdf

• FAA Human Factors Design Standards http://hf.tc.faa.gov/hfds/.

XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

• DOT/FAA/AM-01/17 Human Factors Design Guidelines
for Multifunction Displays

Check for performance with respect to colour blindness. This
site has a useful tool that can be used to convert screenshots to
how they would look to a person with common color blindness:
http://www.etre.com/tools/colourcheck/.

For safety purposes, avoid use of elements that may en-
courage or require the user to stare at the screen contin-
uously.

For safety purposes, avoid user controls that have signif-
icant risk of producing unsafe results if misconfigured by
the pilot.

7.1.1 General colour conventions

Colour conventions generally in use throughout the program:

• Red for indicator of warning

• Orange for indicator of caution

• Green for positive indicator of safety

• Blue for neutral indicator of safety

7.1.2 Displayed data

• Where data is invalid, indicate this by not presenting the
data or showing dashes.

• Present data in user-defined units.

• Display numerical data with significant digits appropriate
to the accuracy of the calculations, or its functional use by
the pilot, whichever is lower.

7.2 Dialogs and menu buttons
7.2.1 Colors

Colour conventions in use are:

• Grey for buttons

• Buttons and other widgets rendered with an evenly shaded
border

• Yellow for clicked items

• Light blue for the key focused item

31

XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

• Medium blue for dialogue title bar

• Text is black if the item is enabled

• Text is greyed out (but still visible) if the item is disabled

7.2.2 dialogue types and navigation buttons

There are four types of dialogs in XCSoar, and the navigation
buttons for each are different. Navigation buttons are the Close,
OK, Cancel and Select buttons.

• Dialogs that modify and save data when the dialogue closes.

These shall usually have a Close button (no Cancel) and
may have context specific function buttons

• Dialogs that modify data where Cancel would be important
for the user.

These shall have OK and Cancel buttons. This may include
dialogs with children dialogs where hitting Cancel from the
parent dialogue cancels all the changes made in the children
dialogs

• Dialogs that have a list of values, one of which can be
selected to return to the parent dialogue.

These shall have Select and Cancel buttons

• Dialogs that display information that cannot be modified.

These shall have a Close button

7.2.3 dialogue button placement and size

• The Close and Cancel buttons will never appear in the same
dialogue and are always located in the same place. This
location will be:

For portrait: lower right

For landscape: lower left

• The Select button will be accompanied with a Cancel but-
ton. The locations will be:

For portrait: Select in lower left, Cancel in lower right

For landscape: Cancel in lower left, Select immediately
above it

• Buttons will be 35 (scaled) pixels high

32

XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

• Buttons will be flush with the bottom of the screen and
with the sides of the screen and against each other (no
margins)

• In portrait, buttons will be 33

• In landscape, buttons will be 65 to 80 (scaled) pixels wide,
as wide as the frame permits. They will generally be a
vertical row of buttons flush left of the screen

• If text won’t fit on a button, the buttons can be made larger
consistently for a screen, but this should be the exception
because if it must contain that much text consider using a
different type of control.

• Exceptions to all the dialogue concepts above are encour-
aged, but should be mocked up and reviewed with the de-
velopment community prior to implementing and possibly
documenting in the developers guide.

7.2.4 Usability

• Minimum size of buttons should be X by Y mm

• Ensure all dialogs are navigable using cursor keys only

• Ensure the focussed item is clearly identified. The rectan-
gle of the widget on the canvas may be drawn using the
fill_focus method of Canvas.

7.3 Main graphics
7.3.1 Colors

Colour conventions in use, in order of priority, are:

• Aircraft black and white, for neutrality but clear identifica-
tion

• Traffic (FLARM) use alarm green, orange, and red.

• Lift is vibrant green, sink is copper orange.

• Aircraft navigation (route, best cruise track) is (ICAO) dark
purple-blue

• Task navigation lines and areas are (ICAO) magenta.

• Updraft sources and other updraft derived data is sky blue.

(Todo) airspace alert colours

33

XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

Map culture (topography) and terrain rendering should conform
to ICAO Annex 4 where appropriate. Note that some modifica-
tions are reasonable for electronic use given that Annex 4 deals
with paper charts. Nevertheless, the colour conventions are use-
ful to adopt as they are likely to be intuitive and are designed for
aviation use.

7.3.2 Pen styles

• Map culture should be rendered with a thin pen

• Thicker pens used for important (e.g. task, navigational,
airspace) lines

• Dashed lines are used to increase perceptual priority

7.3.3 Map overlays

Elements on the map that are not part of the map layer, such
as additional informational widgets (final glide bar, wind, north
arrow) should be rendered so as to help those elements be visually
separated from the map:

• Generally adopt higher contrast (higher colour saturation
or darker shade) than the background map layer elements.

• For elements covering an area (non line), draw the entire
element or a border with a luminosity contrasting pen, of
width IBLSCALE(1).

• Consider whether the widget is required in all flying states
and display modes. if it does not serve a direct functional
purpose in some states/modes, do not render it.

• Avoid locating widgets at the aircraft symbol (ownship sym-
bol). It is important to keep this area clear so the aircraft
symbol can be easily found.

Elements that may be rendered over each other should be organ-
ised in order of priority, particularly with alert warning items above
caution items above non-alert items.

7.4 Terminology
7.4.1 Glide Ratio

’Glide ratio’ is a non-specific term which can refer to the ratio
of horizontal to vertical motion with reference to either the sur-
rounding airmass or the ground.

34

XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

To reduce confusion, ground-referenced glide ratios (eg distance
travelled over ground vs altitude lost) should be referred to by the
term ’glide ratio over ground’ when space allows, or ’glide ratio’
/ ’GR’.

Air-referenced glide ratios (eg airspeed vs sink rate) should be
specified as ’lift/drag ratio’ / ’L/D ratio’ / ’LD’. The lift/drag
ratio is numerically equal to the air-referenced glide ratio when
flying at constant speed.

If usage spans both air-referenced and ground-referenced glide
ratios, the non-specific term ’glide ratio’ / ’GR’ should be used.
’Lift/drag ratio’ should never be used to refer to ground-referenced
glide ratios.

35

8 Lua Scripting

Starting with version 7.0, XCSoar can be extended using Lua
scripts.

Lua is a language that is easy to learn, powerful enough for XC-
Soar and light: the interpreter library weighs just 200 kB. Lua is
a common language choice for integrated scripting languages.

8.1 Learning Lua
p r i n t (” H e l l o ␣World ”)

This manual will not attempt to teach you basic Lua. There are
enough resources on the internet, for example:

• Lua 5.3 Reference Manual

• Programming in Lua, a book on Lua

• Tutorial Directory on the lua-users wiki

• Wikipedia

Just to get you started from here, here’s some more example
code:
−− comment s t a r t s w i t h a doub l e hyphen

−−[[
m u l t i
l i n e
comment
]]−−

i = 42
i f i > 1 then

p r i n t (” i=” . . i)
e l s e i f i == 0 then

p r i n t (” z e r o ”)
e l s e

e r ro r (” n e g a t i v e ”)
end

http://www.lua.org/
http://www.lua.org/manual/5.3/
http://www.lua.org/pil/contents.html
http://lua-users.org/wiki/TutorialDirectory
https://en.wikipedia.org/wiki/Lua_%28programming_language%29

XCSoar Developer Manual 8. LUA SCRIPTING

a = {1 , ’ a ’ , 3 . 1 4 }
p r i n t (a [2])

funct ion f (a , b)
return a ∗ b

end
p r i n t (f (2 , 3))

8.2 Running Lua
The directory XCSoarData/lua/may contain Lua scripts (*.lua).
The directory XCSoarData/lua/lib/ may contain Lua libraries
to be loaded with require.

After startup, XCSoar starts the script init.lua (if it exists).

The InputEvent “RunLuaFile” can be used to start additional
scripts. If no parameter is given, the user is asked to choose a
file. Note that the InputEvent subsystem is deprecated and will
be removed once Lua support is complete.

As long as a Lua script runs, the XCSoar user interface is blocked.
Be careful not to write scripts that loop forever.

Once the Lua script finishes, the Lua interpreter is shut down –
unless the script has registered a callback (e.g. a timer). In that
case, the Lua script stays resident until it unregisters all callbacks
(or until XCSoar quits or the user stops the script explicitly).

8.3 Lua Standard Libraries
XCSoar enables the following Lua standard libraries:

• package

• table

• string

• math

Lua’s print() function writes to the XCSoar log file (XCSoarData/xcsoar.log).

The error() function aborts the Lua script and reports the spec-
ified error message to the user.

XCSoar adds another function to the root namespace: alert().
It shows a dialog with the specified message, and returns as soon
as the user has closed the dialog. This function is experimental,

37

XCSoar Developer Manual 8. LUA SCRIPTING

and may disappear or be renamed at any time. Most importantly:
do not abuse it, as it may annoy the user.

8.4 XCSoar’s Lua API
The package/namespace xcsoar provides access to XCSoar. It
contains the following names:

Name Description
VERSION The XCSoar version number, for example “7.0”.
blackboard Access to sensor data. (8.4.1)
map The map view. (8.4.2)
airspace Access to airspace data. (8.4.3)
wind Access to wind data and settings. (8.4.6)
logger Access to logger settings. (8.4.7)
replay Access to replay system. (8.4.9)
tracking Access to tracking settings. (8.4.8)
timer Class for scheduling periodic callbacks. (8.4.10)

8.4.1 The Blackboard

The blackboard provides access to sensor data, such as GPS lo-
cation.

The following attributes are provided by xcsoar.blackboard:

38

XCSoar Developer Manual 8. LUA SCRIPTING

Name Description
location The current location (table with keys longitude and latitude in degrees) according to GPS.
altitude The current altitude [m] above MSL.
track The current flying direction above ground in degrees.
ground_speed The aircraft speed relative to the ground [m

s
].

air_speed The true airspeed [m
s
].

bank_angle The bank angle in degrees.
pitch_angle The pitch angle in degrees.
heading The current magnetic heading in degrees.
g_load The current g-load.
static_pressure The static pressure [Pa].
pitot_pressure The pitot pressure [Pa].
dynamic_pressure The dynamic pressure [Pa].
temperature The current temperature.
humidity The current humidity
voltage The external battery voltage [V].
battery_level The internal battery-level in percent.
noncomp_vario The non-compensated vertical speed [m

s
].

total_energy_vario The total-energy-compensated vertical speed [m
s
].

netto_vario The netto variometer value [m
s
].

Any of these may be nil if its value is not known, e.g. if there is
no GPS fix.

8.4.2 The Map

The map provides access to XCSoar’s map view.

The following attributes are provided by xcsoar.map:

Name Description
location The current reference location (may be aircraft location or pan location).
is_panning Gives back if the panning mode is active at the moment.
enterpan() Activates the panning mode.
disablepan() Disables the panning mode.
leavepan() Leaves the panning mode.
panto(float latitude, float longitude) Pans to the given location.
pancursor(int dx, int dy) Pans the cursor by dx and dy.
zoom(int factor) Zooms the map, factor -2 to 2.
next() Opens the next Page.
prev() Opens the previous Page.
show() Show the map; disable thermal assistant or other widgets replacing the map view.

39

XCSoar Developer Manual 8. LUA SCRIPTING

8.4.3 Airspace

The Airspace provides access to airspace data, such as name /
distance to the next airspace.

The following attributes are provided by xcsoar.airspace:

Name Description
nearest_vertical_distance The vertical distance to the next airspace [m].
nearest_vertical_name The name of the next vertical airspace.
nearest_horizontal_distance The horizontal distance to the next airspace [m].
nearest_horizontal_name The name of the next horizontal airspace.

8.4.4 Task

The Task provides access to task data such as distances / bearing
to the next waypoint.

The following attributes are provided by xcsoar.task:

40

XCSoar Developer Manual 8. LUA SCRIPTING

Name Description
bearing The true bearing to the next waypoint. For AAT tasks, this is the true

bearing to the target within the AAT sector. [degrees]
bearing_diff The difference between the glider’s track bearing, to the bearing of

the next waypoint, or for AAT tasks, to the bearing to the target within
the AAT sector [degrees].

radial The true bearing from the next waypoint to your position. [degrees].
next_distance The distance to the currently selected waypoint. For AAT tasks, this

is the distance to the target within the AAT sector. [m]
next_distance_nominal The distance to the currently selected waypoint. For AAT tasks, this

is the distance to the origin of the AAT sector. [m]
next_ete Estimated time required to reach next waypoint, assuming

performance of ideal MacCready cruise/climb cycle.
next_eta Estimated arrival local time at next waypoint, assuming performance

of ideal MacCready cruise/climb cycle.
next_altitude_diff Arrival altitude at the next waypoint relative to the safety arrival height.
nextmc0_altitude_diff Arrival altitude at the next waypoint with MC 0 setting, relative to the

safety arrival height.
next_altitude_require Additional altitude required to reach the next turnpoint.
next_altitude_arrival Absolute arrival height at the next waypoint in final glide.
next_gr The required glide ratio over ground to reach the next waypoint,

given by the distance to the next waypoint divided by the height
required to arrive at the safety arrival height.

final_distance Distance to finish around remaining turn points.
final_ete Estimated time required to complete task, assuming performance

of ideal MacCready cruise/climb cycle.
final_eta Estimated arrival local time at task completion, assuming performance

of ideal MacCready cruise/climb cycle.
final_altitude_diff Arrival altitude at the final task turn point relative to the safety arrival

height.
finalmc0_altitude_diff Arrival altitude at the final task turn point , with MC 0 setting, relative

to the safety arrival height.
final_altitude_require Additional altitude required to finish the task.
task_speed Average cross country speed while on the current task,

not compensated for altitude.
task_speed_achieved Achieved cross country speed while on the current task,

compensated for altitude. Equivalent to Pirker cross country
speed remaining.

task_speed_instant Instantaneous cross country speed while on the current task,
compensated for altitude. Equivalent to instantaneous Pirker cross
country speed.

task_speed_hour Average cross country speed while on the current task
over the last hour, not compensated for altitude.

41

XCSoar Developer Manual 8. LUA SCRIPTING

Name Description
final_gr The required glide ratio over the ground to finish the task, given by

the distance to go divided by the height required to arrive at the safety
arrival height.

aat_time Assigned Area Task time remaining.
aat_time_delta Difference between estimated task time and AAT miminum time.
aat_distance Assigned Area Task distance around target points for remainder of

task.
aat_distance_max Assigned Area Task maximum distance possible for remainder of

task.
aat_distance_min Assigned Area Task minimum distance possible for remainder of

task
aat_speed Assigned Area Task average speed achievable around target points

remaining in minimum AAT time.
aat_speed_max Assigned Area Task average speed achievable if flying maximum

possible distance remaining in minimum AAT time.
aat_speed_min Assigned Area Task average spped achievable if flying minimum

possible distance remaining in minimum AAT time.
time_under_max_height The contiguous period the plane has been below the task

start max. height.
next_etevmg Estimated time required to reach next waypoint, assuming current

ground speed is maintained.
final_etevmg Estimated time required to complete task, assuming current ground

speed is maintained.
cruise_efficiency Efficiency of cruse, 1 indicates perfect MacCready performance

8.4.5 Settings

The Settings provides access to xcsoar settings, such as MC value.

The following attributes are provided by xcsoar.settings:

42

XCSoar Developer Manual 8. LUA SCRIPTING

Name Description
mc The current set MacCready Value [m/s].
bugs The current used bug settings in terms of polar degradation.
wingload The current wingload.
ballast Ballast of the glider. 0 means no ballst, 0.3 means 30% of the maximum

ballast the glider can carry.
qnh Area pressure for barometric altimeter calibration [Pa].
max_temp The forecast ground temperature [K].
safetymc The MacCready setting used, when safety MC is enabled for reach

calculations, in task abort mode and for determining arrival altitude at
airfields.

riskfactor The STF risk factor reduces the MacCready setting used to calculate
speed to fly as the glider gets low, in order to compensate for risk.

polardegradation A permanent polar degradation, 1 means no degradation, 0.5 indicates the
glider’s sink rate is doubled.

arrivalheight The height above terrain that the glider should arrive at for a safe landing.
terrainheight The height above trerrain that the glider must clear during final glide.
setmc(float value) Sets the MacCready value
setbugs(float value) Sets the bugs, 1.0 means no bugs, 0.5 means 50% polar degradation.
setqnh(float value) Sets the QNH [Pa]
setballast(float value) Sets the ballst, 0 means no ballst, 0.5 means 50% of the maximum

ballst the glider can carry.
setmaxtemp(float value) Sets the maximum temperature [K].

8.4.6 Wind

The Settings provides access to xcsoar wind data and settings.

The following attributes are provided by xcsoar.wind:

43

XCSoar Developer Manual 8. LUA SCRIPTING

Name Description
wind_mode Wind mode, 0: Manual, 1: Circling, 2: ZigZag, 3: Both.
setwindmode(int value) Sets wind mode [0− 3].
tail_drift Determines whether the snail trail is drifted with the wind

when displayed in circling mode, 0: Off, 1: On.
settaildrift(bool value) Turns Taildrift Off / On [0, 1].
wind_source The Source of the current wind, 0: None, 1: Manual,

2: Circling, 3: Both, 4: External.
wind_speed The current wind speed [m/s].
setwindspeed(float value) Sets manual the wind speed [m/s].
wind_bearing The current wind bearing [degrees].
setwindbearing(float value) Sets manual the wind bearing [degrees].
clear() Clears the wind settings and calculations.

8.4.7 Logger

The Settings provides access to xcsoar Logger data and settings.

The following attributes are provided by xcsoar.logger:

Name Description
pilot_name Gives back the set pilot name.
set_pilot_name(char* name) Sets the pilot name.
time_step_cruise The time interval between logged points when not circling. [s].
set_time_step_cruise(int time) Sets time interval between logged points when not circling [s].
time_step_circling The time interval between logged points when circling [s].
set_time_step_circling(int time) Sets time interval between logged points when circling [s].
auto_logger Status of the auto-logger, 0: On, 1: Take off only 2: Off.
set_autologger(int mode) Sets the Autologger mode, 0: On, 1: Take off only, 2: Off.
nmea_logger Status of the NMEA-Logger, 0: Off, 1: On.
enable_nmea() Enables the NMEA-Logger.
disable_nmea() Disables the NMEA-Logger.
log_book Status of the log-book, 0: Off, 1: On.
enable_logbook() Enables the logbook.
disable_logbook() Disables the logbook.
logger_id The current set logger-id.
set_logger_id(char* id) Sets the logger-id.

8.4.8 Tracking

The Settings provides access to xcsoar Tracking settings.

The following attributes are provided by xcsoar.tracking:

44

XCSoar Developer Manual 8. LUA SCRIPTING

Name Description
skylines_enabled States if skylines tracking is enabled.
enable_skylines() Enables skylines tracking.
disable_skylines() Disables skylines tracking.
skylines_roaming States if skylines roaming is enabled.
skylines_interval The skylines tracking interval [s].
set_skylines_interval(int interval) Sets the tracking interval [s].
skylines_traffic_enabled If enabled shows friends on the map, download the position

of your friends live from the SkyLines server.
enable_skylines_traffic() Enables the display of friends on the map.
disable_skylines_traffic() Disables the display of friends on the map.
skylines_near_traffic_enabled If enabled shows nearby traffic.
enable_skylines_near_traffic() Enables the display of nearby traffic on the map.
disable_skylines_near_traffic() Disables the display of nearby traffic on the map.
livetrack24_enabled States if livetrack24 is enabled.
enable_livetrack24() Enables livetrack24.
disable_livetrack24() Disables livetrack24.
livetrack24_interval Livetrack24 tracking interval [s].
set_livetrack24_interval(int interval) Sets the tracking interval [s].
livetrack24_vehicle_name Get current vehicle name.
set_livetrack24_vehiclename(char* name) Sets the livetrack24 vehiclename.

8.4.9 Replay

The Settings provides access to xcsoar Replay system.

The following attributes are provided by xcsoar.replay:

Name Description
start(path) Starts replay from file path
stop() Stops replay
fast_forward(dt) Fast forwards dt seconds
set_time_scale(r) Sets replay clock rate to r
time_scale Gets replay clock rate s
virtual_time Gets replay virtual time s

8.4.10 Timers

The class xcsoar.timer implements a timer that calls a given
Lua function periodically.
x c s o a r . t i m e r . n ew (60 , funct ion (t)

p r i n t (”A␣minute ␣ has ␣ pa s s ed ”)

45

XCSoar Developer Manual 8. LUA SCRIPTING

t : c a n c e l ()
end)

The following methods are available in xcsoar.timer:

Method Description
new(period, function) Create a new instance and schedule it. The period is a numeric value in seconds.
cancel() Cancel the timer.
schedule(period) Reschedule the timer.

8.4.11 Legacy

Before version 7.0, XCSoar was adapted using the InputEvent
subsystem (see Appendix 9.1). During the Lua transition, Lua
scripts can invoke InputEvents, for example:
x c s o a r . f i r e _ l e g a c y _ e v e n t (” Setup ” , ” b a s i c ”)
x c s o a r . f i r e _ l e g a c y _ e v e n t (”Zoom” , ” b a s i c ”)

This function will be removed before the final 7.0 release.

46

9 File formats

9.1 Input Events
The Input System is deprecated! It is being replaced by a Lua
scripting engine.

9.1.1 Introduction

The Input System is actually a large number of things all bunched
into one.

Primarily it is about giving the user control of what button does
what and when. There is a new concept called Input Mode - this
is a the mode the GUI is in for input. For example, you can click
on the info boxes and you are now in “infobox” mode. Clicking
on the map is called “default”. But it doesn’t stop there, you can
create a new mode called anything you like. This may not mean
much - but wait till you combine it with the rest of the features...

Input is not restricted to hardware buttons any more. You can
map all your hardware buttons (currently support for APP1 to
APP6, Left, Right, Up, Down and Enter, although I believe we
can do some more) but also any key code at all. This feature
allows those with a built in keyboard to use any key to map
to any function in XCS. Where it comes into real advantage is
in external keyboards. There are a number of bluetooth devices
out there (eg: http://shop.brando.com.hk/btgamepad.php)
which can map each of their buttons to any key code - that key
code can then be mapped to any feature in XCS. You can then add
to the hardware buttons the buttons available to you on external
devices. Other inputs (eg: Serial) are also being looked at - and
support is in the code for that extension.

We are striving towards a platform which is not only easier to
use and more intuitive, but also faster and easier to use in flight
as well. As such, another new feature as part of input is the
concept of Button Labels. Combined with the modes mentioned
above, you can create any arbitrary set of functions to map to
any number of buttons. Think about it like creating a tree, or a
multiple level menu.

This produces two benefits that I know will be appreciated by peo-
ple with limited inputs. The first is that you can create menus,

http://shop.brando.com.hk/btgamepad.php

XCSoar Developer Manual 9. FILE FORMATS

where by you press one button to get to the next level (eg: press-
ing on APP1 brings up AutoZoom, Pan Mode, Full screen on the
other buttons. Press APP1 again and it goes to Terrain, Marker
and Auto MacCready. Press APP1 again and the menu is gone)
- but more importantly for those with touch screens and limited
buttons, each of these labels can optionally be assigned a key
and you can touch the button area as if it was a button. This
means that we can actually control on a touch screen model the
entire system without buttons - press an area of the screen and
the buttons pop up, click through - change options and more.

The combined features of labels, configurable buttons (including
from external hardware), hierarchical menus (for lack of a better
name), touch screen buttons has allowed us to configure XCS -
without recompile - for an enormous range of hardware, and per-
sonal preference. And all configurable as plane text, simple files.
There is no need for a file, the defaults internally will probably
be a combination of a 4 button bottom system with one button
always shown on screen for no/few button display.

The screen layout - location of the labels - is also totally config-
urable - allowing us to vary the layout of buttons depending on
the type of organiser or desired look and feel.

There is a great unexpected benefit in the development of the
input system.

We can execute any number of events attached to an input with
only 2 extra lines of code. This worked perfectly. So now we have
a basic macro system, allowing many more events to be attached
to a single input event.

But it doesn’t stop there, this has lead to some more excellent
developments. The idea of Glide Computer Events things like
“Maximum Altitude Reached”. Currently we play a sound effect
for that. But you may choose to play a sound, bring up a message
box and write to the log file.

One nice feature of XCS is the ability to change things such as
Zoom and North when Circling. Now you can do so much more.
You could choose to point North, Zoom to 1.0 (rather than a
relative change), Turn on Vario Sounds, Start a timer. When
switching back to Cruise mode, you can bring up the stats box
for 30 seconds. The options are limited by your imagination.

This is also contributing to a major reduction in complex code.
We can move out these complex tests into one centrally, easier
to manage system, reducing bugs and improving maintainability.

48

XCSoar Developer Manual 9. FILE FORMATS

Another side benefits of these Macros is User Defined Flight
Modes. One idea was a button which switched to Zoom 1.0,
Pan ON, Pan Move to Next Waypoint. Basically the ability to
jump and see the next waypoint. And in the previous we can
change the Input Mode to “ViewWaypoint” - at which point you
can redefine the same button to switch back to your original set-
tings.

The flexibility of this system comes with only one small price. We
can’t provide an interface within XCS to fully customise all of
these near infinitely variable possibilities. However I believe that
is unnecessary anyway, you are not likely to change these sort of
features very often, and definitely not on the field. That does not
mean you can’t, you can of course edit the plane(sic) text file to
change functions.

What this really means is that we can have people in the project
helping and contributing to the customising of XCS, without hav-
ing to change the code. This, especially on an open source project
is fantastic as it nicely separates the user interface changes from
the highly reliable part of the code. It also involves people who
can develop new interfaces and functions that are expert gliders
but not necessarily programmers.

For information on file formats see Common/Data/Input/tem-
plate.xci and the web site documentation.

9.1.2 Defaults and Files

The file in the source Common/Data/input/template.xci is used
to generate automatically the C code necessary for the default
configuration. However it is in the exact same format as can be
read in by XCS and therefore can be used literally as a template
for a more complicated file.

When you create your own file, you will need to select it as the In-
put File within XCSoar Menu/Config/System/Look/Language,In-
put/Events. Choose the custom file you would have previously
created, and then restart XCS.

9.1.3 File format

The file is plain text, with key=value pairs and a blank line to
indicate the end of a record.

mode=default
type=key
data=APP1

49

XCSoar Developer Manual 9. FILE FORMATS

event=StatusMessage My favorite settings are done
event=ScreenModes full
event=Sounds on
event=Zoom 1.0
event=Pan off
label=My Prefs
location=1

The record above demonstrates remapping the first hardware key
on your organiser to change Pan to off, Zoom to 1.0 Sounds on,
ScreenModes full, and then a status message to tell you it is done.

Lines are terminated by the stanard DOS newline which is CRLF
(Carrage Return then Line Feed). Records are terminated by an
extra new line.

9.1.4 Event order

Until further work is done on processing, events are actually done
in reverse order - also known as RPN. This is because the events
work on the stack principle. Each one is pushed onto the stack
for execution, and then executed by popping back off the stack.
This has reduced complexity of the code base.

When writing input events, have a look where you put the Sta-
tusMessage and make sure that it is at the top, not the bottom
(if you have one).

9.1.5 Event list
Event Description
MainMenu
MarkLocation Mark a location.
Mode M Set the screen mode.
Pan P Control pan mode. Possible arguments: on (en-

able pan), off (disable pan), up, down, left, right
PlaySound S Play the specified sound.
SnailTrail S Change snail trail setting. Possible arguments:

off, short, long, show.
ScreenModes M Set the screen mode. Possible arguments: nor-

mal, auxilary, toggleauxiliary, full, togglefull,
toggle.

Sounds S Change vario sounds. Possible arguments: tog-
gle, on, off, show.

StatusMessage M Display the specified status message.
Zoom Z Everything about zoom of map. Possible ar-

guments: auto toogle, auto on, auto off, auto
show, in, out, +, ++, -, –.

50

XCSoar Developer Manual 9. FILE FORMATS

9.1.6 Modes

XCSoar now has the concept of Modes. These are an arbitrary
string that associates with where and what XCS is doing.

Note: a mode entry in a record can have multiple entries by using
a space between eg: “infobox menu1 menu2”

List of known modes

default : Really map mode, where you mostly are

infobox : An info box has been selected on the scrreen

* : Any other arbitrary string

Mode precedence has been tricky, so instead of solving the prob-
lem it is being worked around. XCS will choose to set a global
variable to specify what mode it thinks it is in. This can then be
used by the input code to decide what to do. This mode could
get out of sink with the real world, and careful checking will be
required, but at this stage it seems like the only sensible option.

The code will review first if an entry exists in the current mode,
and then in the default mode. This allows you to do one of
the following example: Define a default action for button “A”
to be “Zoom In” but make that button increase Bugs value in
infobox mode only. You can do this by making an “default” and
a “infobox” entry. You can also put an entry in for Button “A”
for every mode and have complete control.

Special Modes - eg: the level of a menu (Think File vs Edit, vs
Tools vs Help)

have special modes, such as the level of the menu you are at.
You press one button, then another set become available (like
pressing menu and seeing Settings etc). This will be very useful
in non-touch screen models. The menu configuration can then be
read from this same file and configured, allowing any number of
levels and any number of combinations.

The only hard part is what mode to go back to. We need a “Cal-
culate Live Mode” function - which can be called to calculate the
real live mode (eg: finalglide vs curse) rather than the temporary
mode such as Menu, Special Menu Level, Warning etc.

The label and location values are examples of what can be done
here to allow input button labels to be displayed. What needs to
be considered is a simple way of mapping the locations and the
size. In some models it may be that buttons are 4 across the top

51

XCSoar Developer Manual 9. FILE FORMATS

of the screen, where as others it is 3 or 2 or even 6. So both size
and location needs to be considered.

The label itself will go through gettext to allow language transla-
tions.

9.1.7 Keys

The key type can have the following possible values:

APP1-APP6 : Hardware key on pocket pc

F1-F12 : Standard function keys

LEFT, RIGHT, UP, DOWN, RETURN : Mapped to arrow keys - joystick on organisers

A-Z, 0-9 : and other possible keyboard buttons (case is ignored)

XXX Review... Input Types

Types:

hardware These are the standard hardware buttons on normal
organisers. Usually these are APP1..6.

keyboard Normal characters on the keyboard (a-z etc)

nmea A sentence received via NMEA stream (either)

virtual Virtual buttons are a new idea, allowing multiple buttons
to be created on screen. These buttons can then be optionally
mapped to physical buttons or to a spot on the screen (probably
transparent buttons over the map).

Modifiers

It is a long term goal of this project to allow modifiers for keys.
This could include one of the following possibilities:

• Combination presses (although not supported on many de-
vices)

• Double Click

• Long Click

Modifiers such as the above will not be supported in the first
release.

Functions/Events - what it does

AutoZoom on, off, toggle FullScreen on, off, toggle SnailTrail on,
off, long, toggle VarioSound on, off Marker optional text to add
MenuButton on, off, toggle Menu open, close, toggle MenuEntry
task, b+b, abortresume, abore, resume, pressure logger, settings,

52

XCSoar Developer Manual 9. FILE FORMATS

status, analysis, exit, cancel NOTE: Some of the above may be
separate functions Settings (each setting, bring up to that point)
Bugs add, subtract, 0-100Ballast add, subtract, 0-100Zoom add,
subtract, 0-nn (set value) Wind up, down, 0-nn (set value, left,
right, ”n”,”ne”,”e”,”se”,”s”,”sw”,”w”,”nw”... MacCready add,
subtract, 0-nn (set value) WaypointNext ”String” to specific way-
point eg: WayPointNext ”home” WayPoint??? ”reverse” - re-
verse, from last passed back to start (ie: from here to home)
”drop next” - drop the next ”restore” - restore all - from start
of flight but XXX This needs more thought flight ”startstop”,
”start”, ”stop”, ”release” Start/Stop of flight - Can be auto-
matic, but pressing will override automatic part. release markse
the point of release from tow

9.1.8 Glide Computer Events

These are automatically triggered events. They work in exactly
the same way, but instead of the user pressing a key, the glide
computer triggers the events.

A simple example is moving from Cruise to Climb mode. We want
to zoom in, change our track up to north up and switch to full
screen. You may also choose to drop a marker with the words
“entered thermal”. The choicese are up to your imaginations - the
GCE (Glide Computer Events) allow you to control what happens.

These are represented as “type=gce” and data=* - as listed be-
low.

Event Description
COMMPORT_RESTART The comm port is restarted.
FLIGHTMODE_CLIMB The flight mode has switched to

“climb”.
FLIGHTMODE_CRUIS The flight mode has switched to

“cruise”.
FLIGHTMODE_FINALGLIDE The flight mode has switched to “final

glide”.
GPS_CONNECTION_WAIT Waiting for the GPS connection.
GPS_FIX_WAIT Waiting for a valid GPS fix.
HEIGHT_MAX Maximum height reached for this trip.
LANDING You are at landing.
STARTUP_REAL First message - this happens at startup

of the real XCS.
STARTUP_SIMULATOR Startup first message. This happens

during simulator mode.
TAKEOFF You have taken off.

53

XCSoar Developer Manual 9. FILE FORMATS

9.2 Map Data file formats
The map data is typically downloaded from the map generator
server and consists of a single .xcm file. It is a zip file which con-
tains several separate files for terrain, topography and waypoint
data:

info.txt General map information

terrain.jp2 Terrain (elevation) data, georeferenced in terrain.j2w

waypoints.cup Waypoint data

topology.tpl Topography data file index

*.shp / *.dbf / *.shx A set of ESRI format shape file sets with actual topog-
raphy voctor data information, as listed and defined in
topology.tpl (Coasts, rivers, roads, cities etc.)

9.2.1 Map information

info.txt Contains information about the map as a whole, such
as creator, creation time, and lat/lon range.

9.2.2 Terrain data files

The map cointains a digital elevation model of the map area. It is
stored as an JPEG2000 compressed image in the file terrain.jp2.
The projection information (lat/lon boundaries) of the DEM file
are contained in the text file terrain.j2w, in decimal degree
latitude/longitude format. Water is defined as elevation lower
than TERRAIN_WATER_THRESHOLD=-30000, therefore care has to
be taken that JPEG compression parameters and algorithms are
used which do not generate artefacts at the coastlines due to the
potentially big jump in elevation value.

9.2.3 Waypoints

A map database file can contain waypoints. They reside in the
waypoints.cup file, which has regular .CUP format.

9.2.4 Topography data

Shape files

Non-elevation topography data is stored in standard ESRI shape
files. For each type of topographic shape (road, river, city outline,
etc.) there is one shape filein .shp, which containes all shapes of
this type. For each .shp file, there has to be an associated .dbf
file containing shape metadata (such as the name of the city) in

54

XCSoar Developer Manual 9. FILE FORMATS

dBASE format, and an index file of .shx file type which contains
the index that relates the metadata to the shapes.

All of this is defined in the ESRI shape file standard. The official
definition of the standard can be found at
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf, but
there are more compact descriptions available on the web, see for
example wikipedia info and links at
http://en.wikipedia.org/wiki/Shapefile.

There can be more files associated with each shape file, such as
.prj, .qix, .atx, which are not used by XCSoar.

The set of shapefiles actually used by XCSoar and the attributes
of each file are defined in the topography layer description file
topology.tpl. All shape files used by the map must be listed
there.

Topography layer description file (topology.tpl) format

Each line of the topography layer description file (topology.tpl)
contains a comma separated list (CSV) of information needed for
rendering of an individual topography layer. Lines starting with
’*’ are ignored.

XCSoar v6.6 and earlier will display at most 20 topography layers.
XCSoar v6.7 and later will display at most 30 topography layers.

Column name Data type Valid range
filename string
range double (nm) -
icon string
label index int 0-1
color (red component) int 0-255
color (green component) int 0-255
color (blue component) int 0-255
pen width int 0-31
label range (nm) double -
important label range (nm) double -
alpha int 0-255

Table 9.1: Topography file format

filename : The filename of the Topography layer within the container
file.

55

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://en.wikipedia.org/wiki/Shapefile

XCSoar Developer Manual 9. FILE FORMATS

icon : XCSoar v6.5 and earlier, Only the value 219 is recognised,
for town icons. From XCSoar v6.6, the name of the icon to
display. Optional. See below for a list of available names.

range : Zoom level threshold. Layer elements will not be drawn
unless zoomed in closer than this threshold.

pen width : Lines contained within this layer are drawn with pen width.

label range : Label display zoom level threshold. Labels contained in the
layer file will not be rendered unless zoomed in closer than
this threshold.

important label range : A zoom level threshold. Labels contained in the layer file
will be rendered in standard style when the display zoom
level is greater than this threshold.

alpha : The alpha component controls transparency of polygons...
0 means polygons are completely transparent, 255 means
they are completely opaque. Only used by XCSoar v6.7 and
later.

Versions of XCSoar running on Windows and WinCE
ignore any item where transparency is specified.

Point Features

Prior to XCSoar v6.6, this could contain the value 219 to display
an icon for a town From XCSoar v6.6, a user can put an optional
string into the icon column in topology.tpl in the .XCM file (e.g.)

• SpotHeight,5,mountain_top,1,64,64,64,1,5,

• Mast,10,obstacle„„,1,10,

This can be used for Shapefiles containing point features or poly-
gons or linestrings, but is probably only useful for point features.

The icon of the corresponding image and optional label will be
displayed. In the first example, the “mountain_top” icon and a
label will be displayed for each point in the SpotHeight shapefile.
My SpotHeight Shapefile has been generated with the point ele-
vation in feet as the label value). For the second example, only
“obstacle” icons (no labels) will be displayed for points in the
Mast Shapefile..

Icon names are detected in TopographyStore.cpp. Names must
be given in lowercase. If the icon name given is unknown, or no
icon name is given, then icons are not displayed for that Shapefile.

56

XCSoar Developer Manual 9. FILE FORMATS

Names correspond to images which have been linked into XCSoar,
although it is envisaged that in future these will be names of icon
files. Available icon names are:

• mountain_top

• bridge

• tunnel

• tower

• power_plant

• obstacle

• mountain_pass

• weather_station

• thermal_hotspot

• town

• mark

• turnpoint

• small

• cruise

• terrainwarning

• logger

• loggeroff

• target

• teammate_pos

• airspacei

• traffic_safe

• traffic_warning

• traffic_alarm

• taskturnpoint

• marginal

• landable

• reachable

• airport_reachable

57

XCSoar Developer Manual 9. FILE FORMATS

• airport_unreachable

• airport_marginal

• airport_unreachable2

• airport_marginal2

• outfield_unreachable2

• outfield_marginal2

• outfield_reachable

• outfield_unreachable

• outfield_marginal

Adding new Icons

At the moment, adding new icons requires a rebuild of the XCSoar
application.It is envisaged that, in future, this process won’t be
required…users will include icon files in their .XCM map container
files, and refer to them by name. However, that has not yet been
implemented.

To add your own images to the list of icons:

1. Create a .svg file for the icon (e.g. mast.svg) and copy
into xcsoar/Data/icons. For Android, the name must
be lowercase.

2. Insert two (for normal and high-res) lines into xcsoar/Data/XCSoar.rc,
(e.g.)

BITMAP_ICON(IDB_MAST, "mast")
BITMAP_ICON(IDB_MAST_HD, "mast_160")

3. Insert two lines into xcsoar/src/Resources.hpp (e.g.)

MAKE_RESOURCE(IDB_MAST, 500);
MAKE_RESOURCE(IDB_MAST_HD, 5500);

4. Add a corresponding line into the icon_list table in xcsoar/src/Topography/TopographyStore.cpp

{"mast", IDB_MAST},

5. Make XCSoar

After this, a line can be added in topology.tpl to connect the
icon to the Shapefile using the icon name. (e.g.)

Mast,10,mast,,,,,1,10,

58

XCSoar Developer Manual 9. FILE FORMATS

Note that unless these changes are merged into the main XCSoar
repository, then only your specific build of XCSoar will be able to
display your icon image.

59

Appendix A Setting up a development environment
based on linux

This describes the setup of a development environment suitable
to compile XCSoarfor most supported platforms. The manual
focuses on recent releases of Debian-based flavors of GNU/Linux
(including Ubuntu).

In the following instructions, sudo is used to execute commands
with root privileges. This is not enabled by default in Debian (but
on some Debian based distributions, like Ubuntu).

To install a virtual machine with the required, you can use Vagrant,
see section 2.5.

A.1 Download source code
To download the XCSoarsource code, make sure you have git
installed:

sudo apt-get update
sudo apt-get install git

Download the source code of XCSoarby executing git in the
following way in your project directory:

git clone --recurse-submodules git://github.com/XCSoar/XCSoar

A.2 Use provisioning scripts
If you are not using Vagrant, but an existing standard installation
of a Debian-based Linux distribution, you can run the scripts from
ide/provisioning subfolder of the XCSoarsource to install the
build dependencies for various XCSoartarget platforms.

cd ide/provisioning
sudo ./add-debian-unstable.sh
sudo ./install-debian-packages.sh
./install-android-tools.sh

XCSoar Developer Manual
APPENDIX A. SETTING UP A DEVELOPMENT

ENVIRONMENT BASED ON LINUX
A.3 Optional: Eclipse IDE

One of the most widespread IDEs is eclipse. It is not limited
to Android, and can be used for all targets. It is not required
for XCSoar, but its installation is described here as an example.
Eclipse is quite heavyweight, and many developers prefer other
IDEs for XCSoardevelopment.

To install, download the eclipse installer (Sometimes called “Ooomph!”
for some reason) from here:
https://www.eclipse.org/downloads/

Important: Install the CDT version of eclipse for C development,
not the Android/Java package, even if you plan developing for
Android. In addition, it is very convenient to install the git support
(egit).

The current stable version is eclipse mars (4.5) and works with
OpenJDK 7 or 8, the new eclipse neon 4.6, currently RC2, is also
quite stable, and requires OpenJDK 8. Both can be installed with
the installer.

You can also install the ADT (Android development tools) pack-
age for better integration with Android.

Next, create a new project, by generating a make project from
existing sources files. Choose your xcsoar source directory which
contains the makefile.

Important: After you have added the sources, eclipse will start
indexing all files. If you have already started make before this
time, then a lot of files have been downloaded for the various
libraries which are exctracted/built within the XCSoardirectory
(most notably the boost libraries). Indexing all these takes a very
long time, and a lot of heap space, so you should probably stop
the indexer right away. In addition you should probably exclude
these directories from the indexer for the future.

For this, in the C/C++ scope, right-click on the “output” di-
rectory in the file tree on the left side, select “Properties”, then
“Resource/Resource Filters” and add a filter. In the “add filter”
dialog, choose “exclude all”, “files and folders”, “all children (re-
cursive)” and set the Filter details to “Name matches *”. This
will exclude the output tree from the indexer, leading to a minimal
index.

61

XCSoar Developer Manual
APPENDIX A. SETTING UP A DEVELOPMENT

ENVIRONMENT BASED ON LINUX

A.4 Optional: modern LaTeX editor for editing the Manual
Most people today edit LaTeX files in specific editors, as this is
much more comfortable and efficient. This is highly recommended
especially if you are not very familiar with LaTeX: learning it is
very easy with a modern editor. Here, we install TeXstudio as
an example, as it is very widespread and supports the rather rare
LuaLaTeX well.

To install, get the relevant package:

sudo apt-get install texstudio

As the directory tree of XCSoaris very unusual for a LaTeX project,
we need to make some special configurations in order to allow
for quick compiling from within the editor, and for full synctex
functionality:

In “Options / Configure TeXStudio”, enable “show advanced op-
tions”.

In “Options / Configure TeXStudio / Commands / Commands /
LuaLaTeX”, replace

lualatex -synctex=1 -interaction=nonstopmode %.tex

with

lualatex -synctex=1 -interaction=nonstopmode
-output-directory=?a)../../../output/manual %.tex

In “Options / Configure TexStudio / Build / Build Options /
Addition Search Paths”:
Enter in both fields (“Log file” and in the field “PDF File”):

../../../output/manual/

Add the following line to both the .profile and the .bashrc
file of your user directory:

export TEXINPUTS="..:../../../output/manual:../../../output/manual/en:../../..:"

Finally, you need to run “make manual” in the XCSoarbase direc-
tory at least once from the command line before you can compile
from within the TexStudio interface. This creates the path struc-
ture and generates the figure files which are included into the
manual. Of course, if you change figures, you might have to run
“make manual” again.

Inside TeXStudio, open the file “XCSoar-manual.tex” (or one of
the other root files) and right-click on this file to “set as explicit

62

XCSoar Developer Manual
APPENDIX A. SETTING UP A DEVELOPMENT

ENVIRONMENT BASED ON LINUX

root document”, in the structure view on the left. Now you
are good to go. Make changes and press F5 to see the result
immediately.

63

Appendix B GNU General Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some
other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs,
too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have.
You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free soft-
ware. If the software is modified by someone else and passed on, we

XCSoar Developer Manual APPENDIX B. GNU GENERAL PUBLIC LICENSE

want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program
will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi-
fication follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which con-
tains a notice placed by the copyright holder saying it may be
distributed under the terms of this General Public License. The
“Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work con-
taining the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Here-
inafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act
of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by
running the Program). Whether that is true depends on what
the Program does.

2. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appro-
priate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a
copy of this License along with the Program.
You may charge a fee for the physical act of transferring a
copy, and you may at your option offer warranty protection in
exchange for a fee.

3. You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and
copy and distribute such modifications or work under the terms

65

XCSoar Developer Manual APPENDIX B. GNU GENERAL PUBLIC LICENSE

of Section 1 above, provided that you also meet all of these
conditions:

(a) You must cause the modified files to carry prominent no-
tices stating that you changed the files and the date of
any change.

(b) You must cause any work that you distribute or publish,
that in whole or in part contains or is derived from the
Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this
License.

(c) If the modified program normally reads commands inter-
actively when run, you must cause it, when started run-
ning for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users
may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not
normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.
If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is
to exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on
the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on
it, under Section 2) in object code or executable form under the
terms of Sections 1 and 2 above provided that you also do one
of the following:

(a) Accompany it with the complete corresponding machine-
readable source code, which must be distributed under the

66

XCSoar Developer Manual APPENDIX B. GNU GENERAL PUBLIC LICENSE

terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than
your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and
2 above on a medium customarily used for software inter-
change; or,

(c) Accompany it with the information you received as to the
offer to distribute corresponding source code. (This al-
ternative is allowed only for noncommercial distribution
and only if you received the program in object code or
executable form with such an offer, in accord with Sub-
section b above.)

The source code for a work means the preferred form of the
work for making modifications to it. For an executable work,
complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the exe-
cutable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed
(in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have
not signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copy-

67

XCSoar Developer Manual APPENDIX B. GNU GENERAL PUBLIC LICENSE

ing, distributing or modifying the Program or works based on
it.

7. Each time you redistribute the Program (or any work based
on the Program), the recipient automatically receives a license
from the original licensor to copy, distribute or modify the Pro-
gram subject to these terms and conditions. You may not im-
pose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent is-
sues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultane-
ously your obligations under this License and any other perti-
nent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section
is intended to apply and the section as a whole is intended to
apply in other circumstances.
It is not the purpose of this section to induce you to infringe
any patents or other property right claims or to contest validity
of any such claims; this section has the sole purpose of pro-
tecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people
have made generous contributions to the wide range of software
distributed through that system in reliance on consistent appli-
cation of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is be-
lieved to be a consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of
this License.

68

XCSoar Developer Manual APPENDIX B. GNU GENERAL PUBLIC LICENSE

10. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies a version number of this License which ap-
plies to it and “any later version”, you have the option of fol-
lowing the terms and conditions either of that version or of any
later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you
may choose any version ever published by the Free Software
Foundation.

11. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to
the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Soft-
ware Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

No warranty

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER

69

XCSoar Developer Manual APPENDIX B. GNU GENERAL PUBLIC LICENSE

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

70

	1 Introduction
	2 Compiling XCSoar
	2.1 Getting the Source Code
	2.2 Requirements
	2.3 Target-specific Build Instructions
	2.3.1 Compiling for Linux/UNIX
	2.3.2 Compiling for Android
	2.3.3 Compiling for Windows
	2.3.4 Compiling for iOS and macOS
	2.3.5 Compiling for macOS (with Homebrew)
	2.3.6 Compiling on the Raspberry Pi 4
	2.3.7 Compiling for the Raspberry Pi 1-3
	2.3.8 Compiling for the Cubieboard
	2.3.9 Compiling for Kobo E-book Readers
	2.3.10 Editing the Manuals

	2.4 Options
	2.4.1 Parallel Build
	2.4.2 Optimised Build
	2.4.3 Compiling with ccache

	2.5 Using a build VM with Vagrant

	3 Policy
	3.1 Git Work Flow
	3.1.1 Version Numbering
	3.1.2 Git Repository Enduring Branches

	3.2 Writing Patches
	3.2.1 GitHub
	3.2.2 Developers' Mail List
	3.2.3 Basic Patch Requirements

	3.3 Code Style
	3.4 C++
	3.4.1 Other rules

	3.5 Graphical User Interface
	3.5.1 Letter Cases

	4 Architecture
	4.1 Source Organisation
	4.2 Threads and Locking
	4.2.1 Threads
	4.2.2 Locking

	4.3 Accessing Sensor Data

	5 The build system
	5.1 Linker parameters

	6 Developing
	6.1 Debugging XCSoar

	7 User interface guidelines
	7.1 General
	7.1.1 General colour conventions
	7.1.2 Displayed data

	7.2 Dialogs and menu buttons
	7.2.1 Colors
	7.2.2 dialogue types and navigation buttons
	7.2.3 dialogue button placement and size
	7.2.4 Usability

	7.3 Main graphics
	7.3.1 Colors
	7.3.2 Pen styles
	7.3.3 Map overlays

	7.4 Terminology
	7.4.1 Glide Ratio

	8 Lua Scripting
	8.1 Learning Lua
	8.2 Running Lua
	8.3 Lua Standard Libraries
	8.4 XCSoar's Lua API
	8.4.1 The Blackboard
	8.4.2 The Map
	8.4.3 Airspace
	8.4.4 Task
	8.4.5 Settings
	8.4.6 Wind
	8.4.7 Logger
	8.4.8 Tracking
	8.4.9 Replay
	8.4.10 Timers
	8.4.11 Legacy

	9 File formats
	9.1 Input Events
	9.1.1 Introduction
	9.1.2 Defaults and Files
	9.1.3 File format
	9.1.4 Event order
	9.1.5 Event list
	9.1.6 Modes
	9.1.7 Keys
	9.1.8 Glide Computer Events

	9.2 Map Data file formats
	9.2.1 Map information
	9.2.2 Terrain data files
	9.2.3 Waypoints
	9.2.4 Topography data

	A Setting up a development environment based on linux
	A.1 Download source code
	A.2 Use provisioning scripts
	A.3 Optional: Eclipse IDE
	A.4 Optional: modern LaTeX editor for editing the Manual

	B GNU General Public License

