
XCSoar 6.6
the open-source glide computer

Developer Manual

May 8, 2013
For XCSoar version 6.6.1

www.xcsoar.org

http://www.xcsoar.org


Contents

1 Introduction 5

2 Compiling XCSoar 6

2.1 Getting the Source Code . . . . . . . . . . . . . 6

2.2 Requirements . . . . . . . . . . . . . . . . . . . 6

2.3 Target-specific Build Instructions . . . . . . . . 7

2.3.1 Compiling for Linux/UNIX . . . . . . . 7

2.3.2 Compiling for Android . . . . . . . . . . 8

2.3.3 Compiling for Windows . . . . . . . . . 8

2.3.4 Compiling for Windows CE . . . . . . . 9

2.3.5 Compiling for Mac OS X . . . . . . . . . 9

2.3.6 Compiling for the Raspberry Pi . . . . . 10

2.3.7 Compiling for Kobo E-book Readers . . 10

2.4 Options . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Parallel Build . . . . . . . . . . . . . . . 10

2.4.2 Optimised Build . . . . . . . . . . . . . 10

3 Policy 11

3.1 Writing Patches . . . . . . . . . . . . . . . . . . 11

3.2 Code Style . . . . . . . . . . . . . . . . . . . . . 11

3.3 C++ . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Features . . . . . . . . . . . . . . . . . . 13

3.3.2 Other rules . . . . . . . . . . . . . . . . 14

3.4 Graphical User Interface . . . . . . . . . . . . . 14

3.4.1 Letter Cases . . . . . . . . . . . . . . . . 14

4 Architecture 16

4.1 Source Organisation . . . . . . . . . . . . . . . 16

4.2 Threads and Locking . . . . . . . . . . . . . . . 17

4.2.1 Threads . . . . . . . . . . . . . . . . . . 17

4.2.2 Locking . . . . . . . . . . . . . . . . . . 18

4.3 Accessing Sensor Data . . . . . . . . . . . . . . 19

5 The build system 21

5.1 Linker parameters . . . . . . . . . . . . . . . . . 21



XCSoar Developer Manual Contents

6 Developing 22

6.1 Debugging XCSoar . . . . . . . . . . . . . . . . 22

7 User interface guidelines 23

7.1 General . . . . . . . . . . . . . . . . . . . . . . 23

7.1.1 General colour conventions . . . . . . . . 24

7.1.2 Displayed data . . . . . . . . . . . . . . 24

7.2 Dialogs and menu buttons . . . . . . . . . . . . 24

7.2.1 Colors . . . . . . . . . . . . . . . . . . . 24

7.2.2 dialogue types and navigation buttons . 25

7.2.3 dialogue button placement and size . . . 25

7.2.4 Usability . . . . . . . . . . . . . . . . . . 26

7.3 Main graphics . . . . . . . . . . . . . . . . . . . 26

7.3.1 Colors . . . . . . . . . . . . . . . . . . . 26

7.3.2 Pen styles . . . . . . . . . . . . . . . . . 27

7.3.3 Map overlays . . . . . . . . . . . . . . . 27

7.4 Terminology . . . . . . . . . . . . . . . . . . . . 28

7.4.1 Glide Ratio . . . . . . . . . . . . . . . . 28

8 File formats 29

8.1 Input Events . . . . . . . . . . . . . . . . . . . 29

8.1.1 Introduction . . . . . . . . . . . . . . . . 29

8.1.2 Defaults and Files . . . . . . . . . . . . . 31

8.1.3 File format . . . . . . . . . . . . . . . . 31

8.1.4 Event order . . . . . . . . . . . . . . . . 32

8.1.5 Event list . . . . . . . . . . . . . . . . . 33

8.1.6 Modes . . . . . . . . . . . . . . . . . . . 33

8.1.7 Keys . . . . . . . . . . . . . . . . . . . . 34

8.1.8 Glide Computer Events . . . . . . . . . . 35

8.2 Topography layer description file . . . . . . . . 36

8.2.1 Point Features . . . . . . . . . . . . . . . 37

8.2.2 Adding new Icons . . . . . . . . . . . . . 39

A GNU General Public License 40

3



Preface

This manual applies to XCSoar version 6.0. The authors re-
serve the right to update this manual as enhancements are
made throughout the life of this product.

Warnings and precautions

IT IS THE USER’S RESPONSIBILITY TO USE THIS SOFT-
WARE PRUDENTLY. THIS SOFTWARE IS INTENDED
TO BE USED ONLY AS A NAVIGATION AID AND MUST
NOT BE USED FOR ANY PURPOSE REQUIRING PRE-
CISE MEASUREMENT OF DIRECTION, DISTANCE, LO-
CATION, OR TOPOGRAPHY. THIS SOFTWARE SHOULD
NOT BE USED AS AN AID TO DETERMINE GROUND
PROXIMITY FOR AIRCRAFT NAVIGATION. THIS SOFT-
WARE SHOULD NOT BE USED AS A TRAFFIC COLLI-
SION AVOIDANCE SYSTEM.

Legal notices

Software license agreement

This software is released according to the GNU General Public
License Version 2. See Appendix A for the full text of the
agreement and warranty notice.

Limited liability

In no event shall XCSoar, or its principals, shareholders, offi-
cers, employees, affiliates, contractors, subsidiaries, or parent
organizations, be liable for any incidental, consequential, or
punitive damages whatsoever relating to the use of the Prod-
uct.

Disclaimer

This product, and all accompanying files, data and materials,
are distributed ”as is” and with no warranties of any kind,
whether express or implied. This product is used entirely at
the risk of the user. Although great care has been taken to



XCSoar Developer Manual Contents

eliminate defects during its development it is not claimed to
be fault-free. No claims are made regarding its correctness,
reliability or fitness for any particular purpose. The XCSoar
project developers and contributors shall not be liable for er-
rors contained herein or for incidental or consequential dam-
ages, loss of data or personal injury in connection with fur-
nishing, performance, or use of this material.

5



1 Introduction



2 Compiling XCSoar

The make command is used to launch the XCSoar build pro-
cess. You can learn more about the build system internals in
chapter 5.

Most of this chapter describes how to build XCSoar on Linux,
with examples for Debian/Ubuntu. A cross-compiler is used
to build binaries for other operating systems (for example An-
droid and Windows).

2.1 Getting the Source Code

The XCSoar source code is managed with git. It can be down-
loaded with the following command:

git clone git://git.xcsoar.org/xcsoar/master/xcsoar.git

To update your repository, type:

git pull

For more information, please read to the git documentation.

2.2 Requirements

The following is needed for all targets:

• GNU make

• GNU compiler collection (gcc), version 4.6.2 or later or
clang/LLVM 3.1 (with ”make CLANG=y”)

• GNU gettext

• rsvg

• ImageMagick 6.4

• xsltproc

• Perl and XML::Parser

The following command installs these on Debian:

apt-get install make \

  librsvg2-bin xsltproc \

  imagemagick gettext

http://git-scm.com/
http://librsvg.sourceforge.net/)
http://www.imagemagick.org/
http://xmlsoft.org/XSLT/xsltproc2.html


XCSoar Developer Manual 2. COMPILING XCSOAR

2.3 Target-specific Build Instructions

2.3.1 Compiling for Linux/UNIX

The following additional packages are needed to build for Linux
and similar operating systems:

• Boost

• zlib

• CURL

• SDL

• SDL ttf

• libpng

• libjpeg

• OpenGL (Mesa)

• to run XCSoar, you need one of the following fonts (De-
bian package): DejaVu (ttf-dejavu), Droid (ttf-droid),
Freefont (ttf-freefont)

The following command installs these on Debian:

apt-get install make g++ \

  libboost-dev zlib1g-dev \

  libsdl1.2-dev libsdl-ttf2.0-dev \

  libpng-dev libjpeg-dev \

  libcurl4-openssl-dev \

  libxml-parser-perl \

  librsvg2-bin xsltproc \

  imagemagick gettext \

  ttf-dejavu

To compile, run:

make

You may specify one of the following targets with TARGET=x:

UNIX regular build (the default setting)
UNIX32 generate 32 bit binary
UNIX64 generate 64 bit binary
OPT alias for UNIX with optimisation and no de-

bugging

8

http://www.boost.org/
http://www.zlib.net/
http://curl.haxx.se/
http://www.libsdl.org/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libpng.org/
http://libjpeg.sourceforge.net/


XCSoar Developer Manual 2. COMPILING XCSOAR

2.3.2 Compiling for Android

For Android, you need:

• Android SDK level 16

• Android NDK r8e

• Ogg Vorbis

• Apache Ant

The Makefile assumes that the Android SDK is installed in
~/opt/android-sdk-linux_x86 and the NDK is installed in
~/opt/android-ndk-r8e. You can use the options ANDROID_SDK
and ANDROID_NDK to override these paths.

To compile, run:

make TARGET=ANDROID

Use one of the following targets:

ANDROID for ARMv6 CPUs
ANDROID7 for ARMv7 CPUs
ANDROID7NEON with NEON extension
ANDROID86 for x86 CPUs
ANDROIDMIPS for MIPS CPUs
ANDROIDFAT ”fat” package for all supported CPUs

Enabling IOIO Support

IOIO support must be enabled explicitly, because it depends
on IOIOLib. First get the IOIOLib source code:

git clone git://github.com/ytai/ioio.git

Now add the parameter IOIOLIB_DIR pointing to this reposi-
tory:

make TARGET=ANDROID clean

make TARGET=ANDROID \

 IOIOLIB_DIR=/usr/src/git/ioio/software/IOIOLib

The first command may be necessary if the output directory
already contains binaries without IOIO support.

2.3.3 Compiling for Windows

To cross-compile to (desktop) Windows, you need the mingw-
w64 version of gcc:

9

http://developer.android.com/sdk/
http://developer.android.com/sdk/ndk/
http://www.vorbis.com/
http://ant.apache.org/
http://www.arm.com/products/processors/technologies/neon.php


XCSoar Developer Manual 2. COMPILING XCSOAR

http://mingw-w64.sourceforge.net/

To compile, run one of the following:

make TARGET=PC

Use one of the following targets:

PC 32 bit Windows (i686)
WIN64 Windows x64 (amd64 / x86-64)
WINE WineLib (experimental)
CYGWIN Windows build with Cygwin (experimental)

2.3.4 Compiling for Windows CE

For PocketPC / Windows CE / Windows Mobile, you need
mingw32ce:

• mingw32ce

To compile, run:

make TARGET=WM5X

Use one of the following targets:

PPC2000 PocketPC 2000 / Windows CE 3.0
PPC2003 PocketPC 2003 / Windows CE 4.0
PPC2003X for XScale CPUs
WM5 Windows Mobile / Windows CE 5.0
WM5X for XScale CPUs
ALTAIR for Triadis Altair

2.3.5 Compiling for Mac OS X

For Mac OS X, you need:

• GCC 4.6.2 or newer (http://hpc.sourceforge.net/, or home-
brew, or Macports)

• Boost

• zlib

• CURL

• SDL

• SDL ttf

• libpng

• libjpeg

• libicns

10

http://max.kellermann.name/projects/cegcc/
http://www.boost.org/
http://www.zlib.net/
http://curl.haxx.se/
http://www.libsdl.org/
http://www.libsdl.org/projects/SDL_ttf/
http://www.libpng.org/
http://libjpeg.sourceforge.net/
http://icns.sourceforge.net/


XCSoar Developer Manual 2. COMPILING XCSOAR

2.3.6 Compiling for the Raspberry Pi

To compile, run:

make TARGET=PI

This target is only used for cross-compiling on a (desktop)
computer. If you compile on the Raspberry Pi, the default
target will auto-detect the Pi.

2.3.7 Compiling for Kobo E-book Readers

To compile, run:

make TARGET=KOBO

2.4 Options

2.4.1 Parallel Build

Most contemporary computers have multiple CPU cores. To
take advantage of these, use the make -j option:

make -j12

This command launches 12 compiler processes at the same
time.

Rule of thumb: choose a number that is slightly larger than
the number of CPU cores in your computer. 12 is a good
choice for a computer with 8 CPU cores.

2.4.2 Optimised Build

By default, debugging is enabled and compiler optimisations
are disabled. The resulting binaries are very slow. During
development, that is helpful, because it catches more bugs.

To produce optimised binaries, use the option DEBUG:

make DEBUG=n

Be sure to clean the output directory before you change the
DEBUG setting, because debug and non-debug output files are
not compatible.

The convenience target OPT is a shortcut for:

TARGET=UNIX DEBUG=n TARGET_OUTPUT_DIR=output/OPT

It allows building both debug and non-debug incrementally,
because two different output directories are used.

11



3 Policy

3.1 Writing Patches

Submit patches or git pull requests to the developer mail-
ing list (xcsoar-devel@lists.sourceforge.net). We pro-
vide accounts on git.xcsoar.org to regular contributors.

A patch should be self-explanatory, it needs a good descrip-
tion. The subject line specifies the subsystem/library name
and a brief description of what is changed, followed by an
empty line. Then write a longer description if needed, and
explain why this change is needed.

Each patch must compile and must not introduce a regression
(as far as we know at the time).

Each patch must be self-contained and should only change one
thing. Split larger patches into smaller pieces. Don’t refactor
and add/modify/remove features in the same patch.

Don’t rewrite code unless you need to. Migrate incrementally
to a new concept. Keep patches small and easy to understand.

3.2 Code Style

79 columns, reasonable exceptions allowed. Indent 2 spaces,
no tabs.

Comments: write enough code comments (in English). All
workarounds must be documented. Everybody must be able
to understand your code, even when you’re gone.

API documentation: non-trivial functions should be docu-
mented in a doxygen comment.

Names: class/function names in CamelCase (not camelCase);
attributes/variables lower case, separated with underscore (e.g.
foo bar); constants (including enum values) all upper case
(e.g. FOO BAR).

Exception: when a foreign API is being mimicked (e.g. STL
containers), we adopt its naming conventions.



XCSoar Developer Manual 3. POLICY

Files: *.cpp and *.hpp for C++. Files should be named after
the main class which is provided. Each class should have a
separate source file and a separate header. UNIX text format.

Be const-correct.

Compile with WERROR=y and fix all warnings.

Don’t write large functions. Split them up when they become
too large.

Avoid dynamic allocation. Dynamic allocation means over-
head, more locking and heap fragmentation. Use StaticArray
and StaticString if possible.

Asterisks belong to the variable name, not to the type name.
Consider “Foo* a, b”. “Foo *a, b” or “Foo *a, *b” is eas-
ier to understand.

Some sample code to demonstrate our code style:

/**

* API documentation for this class.

*/

struct TheStruct {

unsigned an_attribute;

bool second_attribute;

TheStruct();

/**

* API documentation for this method.

*

* @param foo documentation for this parameter

* @return documentation for the return value

*/

bool TheMethod(int foo);

};

TheStruct::TheStruct()

:an_attribute(0),

second_attribute(true)

{

}

static bool

FooBar(int a_parameter, unsigned another_parameter,

const TheStruct *next_row)

{

13



XCSoar Developer Manual 3. POLICY

switch (a_parameter) {

case 0:

break;

}

if (a_parameter == 2 && another_parameter == 3 &&

next_row != NULL)

return true;

return a_parameter == 42;

}

3.3 C++

3.3.1 Features

C++ is a complex language with many features, but some of
them come at a cost (XCSoar runs on weak embedded devices),
and others are not supported well by compilers. Adopting a
new compiler version is difficult, because the new version may
not be available on all platforms. This section describes the
C++ language features that are allowed to be used.

XCSoar’s standard compiler is gcc. We need to stay com-
patible with version 4.6, because that is what cegcc is based
on.

The following C++ features must not be used:

• RTTI

• exceptions

C++11

The XCSoar code base is currently migrating to the new stan-
dard C++11. The following C++11 features are safe to use:

• auto-typed variables

• Rvalue references

• Explicit conversion operators

• Strongly-typed enums

• Defaulted and deleted functions

• Generalized constant expressions (constexpr)

• Range-based for

14



XCSoar Developer Manual 3. POLICY

• nullptr

3.3.2 Other rules

In a class declaration, attributes come first, then construc-
tor/destructor, and finally the methods. Having all attributes
in one place gives a good overview of the nature of a class.

Avoid expensive and bloated STL containers if there are cheaper
solutions (e.g. StaticArray, StaticString if the maximum
size is predictable).

Avoid template hell. Keep templates readable. Keep in mind
that excessive template use may bloat the binary.

3.4 Graphical User Interface

3.4.1 Letter Cases

Following the guidline should prevent the GUI from mixtures
of ”ON” and ”On” text elements, and lead to a systematic
GUI text presentation. The goal is to recognize GUI text fast
and reliable.

Captions : Captions (button captions, windows titles) to use capi-
talization. E.g. ,”Pan On”, ”The Display Of ...”.

Abbreviations : Generally known abbreviation use upper case like ”MC”,
”ETA”, ”V”; or they can use CamelCase, especially when
using synthetic words like ”GoTo”, ”InfoBox”. Abbrevi-
ated words by simply cutting the end of the word needs
a dot, e.g. ”Max. temp.”

Plain text : Longer help texts are to write like prose: ”This is the
help page for ...”.

Labels : Label text has the least systematic constraints:

• Captions for text (input) fields, e.g. ”Wing load-
ing”

• Info text on widgets. E.g. ”No data” on an empty
analysis page.

• Label text for radio or check boxes.

• Selections on Combo-boxes, selectors, Pull-down menus.

All those should go like prose, whereas exceptions might
be meaningful.

15



XCSoar Developer Manual 3. POLICY

Gauge caption : Also the appearance of the gauge caption should be cov-
ered with that. They are currently mapped to upper
case all over. I think the most readable also here is a
CamelCase approach. E.g. to distinct ”WP Dist”, ”WP
AltD”, and ”WP AltR”. Another good example would
be MACCREADY, which should be MacCready, or just
MC.

Units : Units have their own specific appearance. A profound
paper is http://physics.nist.gov/cuu/pdf/checklist.pdf we
could just refer to.

16



4 Architecture

This chapter describes XCSoar’s internal code architecture.

4.1 Source Organisation

XCSoar’s source code is stored in the src directory. This
section tries to give a rough overview where you can find what.

• Util/: generic C++ utilities that do not depend on ex-
ternal libraries, such as data structures, string operations

• Math/: math data types (fixed-point math, angles) and
generic formulas

• Geo/: geographic data structures and formulas

• Formatter/: code that formats internal values to strings

• Units/: conversion from SI units (“System” units) to
configured user units

• NMEA/: data structures for values parsed from NMEA

• Profile/: user profiles, loading from and saving to

• IGC/: support for the IGC file format

• Logger/: all loggers (NMEA, IGC, flights)

• Thread/: multi-threading support (OS specific)

• Screen/: base library for the graphical user interface

• Renderer/: various graphical renderers, for map and
analysis

• MapWindow/: the map

• Form/: modal dialogs and their controls (based on the
screen library)

• Dialogs/: modal dialogs implementations (based on the
form library)

• Net/: networking code (OS specific)

• Operation/: generic code to support cancellable long-
running operations



XCSoar Developer Manual 4. ARCHITECTURE

• Android/: code specific to Android (the native part
only; Java code is in android/src/

• Engine/PathSolvers/: an implementation of Dijkstra’s
path finding algorithm, for task and contest optimisation

• Engine/Airspace/: airspace data structures and airspace
warnings

• Engine/Waypoint/: waypoint data structures

• Engine/GlideSolvers/: a MacCready implementation

• Engine/Task/: task data structures and calculations

• Engine/Contest/: contest optimisation

• Engine/Route/: the route planner (airspace and terrain)

4.2 Threads and Locking

4.2.1 Threads

XCSoar runs on multiple threads, to make the UI responsive
but still allow expensive background calculations.

This is how it looks like on Windows and Linux/SDL (software
rendering):

UI thread DrawThread

redraw (Pan)

BufferCanvas

CalcThread

re
su

lt
s

MergeThread

re
su

lt
s

Device

sen
so
r da

ta

Device 2

sensor data

I/O thread

d
a
ta

sensor data

The UI thread is the main thread. It starts the other threads
and is responsible for the UI event loop. No other thread is
allowed to manipulate windows. The UI thread has a timer

18



XCSoar Developer Manual 4. ARCHITECTURE

which does regular house keeping twice per second (Process-
Timer.cpp).

The calculation thread (CalculationThread.cpp, GlideCom-
puter*.cpp) does all the expensive calculations in background.
It gets data from the devices (through MergeThread) and for-
wards it together with calculation results to the drawing thread
and the main thread.

Each device has its own thread (SerialPort.cpp). This is
needed because Windows CE does not support asynchronous
COMM port I/O. The thread is stopped during task declara-
tion (which happens in the UI thread).

When new data arrives on the serial port, the MergeThread

gets notified, which will merge all sensor values into one data
structure. It will then run cheap calculations, and forwards
everything to the CalculationThread.

With OpenGL, the map is rendered live without a buffer.
There is no DrawThread.

On Android, the UI thread is not the main thread - the main
thread is implemented in Java, managed by Android itself.
The UI thread listens for events which the Java part drops into
the event queue (NativeView.java and others). The internal
GPS does not need a thread, it is implemented with Java call-
backs. For Bluetooth I/O, there are two threads implemented
in Java (InputThread.java and OutputThread.java, man-
aged by BluetoothHelper.java).

4.2.2 Locking

Some data structures are rarely modified. There is no lock
for them. For a modifications, all threads must be suspended.
Example: waypoints, airspaces.

Other data structures are modified so often that correct lock-
ing would be too much overhead. Each thread and each in-
stance has its own copy. The lock needs to be obtained only
for making the private copy. The private copy can be used
without locking. Example: NMEA INFO, DERIVED INFO.

There are objects which are too expensive to copy. Normal
locking applies to them. We have a template class called Guard

to enforce proper read/write locking. Example: the task.

19



XCSoar Developer Manual 4. ARCHITECTURE

4.3 Accessing Sensor Data

Much of XCSoar deals with obtaining sensor data and visual-
ising it.

Suppose you want to write a dialog that needs the current GPS
location, where do you get it? The short and simple answer is:
from CommonInterface::Basic() (the InterfaceBlackboard).
Example:

#include "Interface.hpp"

...

const auto &basic = CommonInterface::Basic();

if (basic.location_available)

current_location = basic.location;

This is true for the main thread (aka the “user interface thread”).
Other threads must not use the Interface.hpp library, be-
cause the InterfaceBlackboard is not protected in any way.
It contains copies of various data structures just for the main
thread.

This is how sensor data moves inside XCSoar:

MergeThread
BasicComputer

DeviceBlackboard

Device 1

N
M
EA

Info

Device 2

N
M
EA

In
fo

CalcThread
GlideComputer

GlideComputerBlackboard

M
o
re

D
a
ta

UI thread
InterfaceBlackboard
BlackboardListener

D
e
riv

e
d
In

fo

DrawThread
MapWindow

MapWindowBlackboard
DerivedInfo

The device driver parses input received from its device into its
own NMEAInfo instance inside DeviceBlackboard (i.e. per_device_data).
Then it wakes up the MergeThread to merge the new data into

20



XCSoar Developer Manual 4. ARCHITECTURE

the central NMEAInfo instance. The MergeThread hosts the
BasicComputer which attempts to calculate missing data (for
example, derives vario from GPS altitude).

The CalculationThread wakes up and receives the MoreData
object from DeviceBlackboard. Here, expensive calculations
are performed (GlideComputer: task engine, airspace warn-
ings, ...), resulting in a DerivedInfo object. The CalculationThread
runs no more than twice per second.

Finally, the UI thread wakes up and receives MoreData and
DerivedInfo via DeviceBlackboard. This updates InfoBoxes
and other UI elements. On Windows, the map is drawn in a
separate thread, so there’s another layer.

Let’s get back to the question: where do I get sensor data?
That depends on who you are:

• you are the user interface: (InfoBoxes, dialogs, any Win-
dow callback): InterfaceBlackboard (see above). To
get notified on changes, register a BlackboardListener

(and don’t forget to unregister it).

• you are the MapWindow: depends! If you’re being called
from OnPaintBuffer (i.e. inside the DrawThread), you
must use the MapWindowBlackboard, all others must use
the InterfaceBlackboard.

• you are a “computer” library: you will get the values as a
parameter. Don’t try to use the GlideComputerBlackboard
directly.

• you are a device driver: implement the method OnSensorUpdate
or OnCalculatedUpdate if you need to know values from
other devices or calculation results.

• everybody else may use the DeviceBlackboard, but be
sure to lock it while using its data.

21



5 The build system

A big plain Makefile is used to control the XCSoar build.
GNU extensions are allowed.

This chapter describes the internals of our build system; for
instructions on compiling XCSoar, see chapter 2.

5.1 Linker parameters

The following variables (or variable suffixes) appear in the
Makefile (conforming to automake conventions):

LDFLAGS : Linker flags, such as -static or -Wl,..., but not -l.

LDLIBS : All -l flags, e.g. -lGL.

LDADD : Path names of static libraries, e.g. /usr/lib/libz.a.

Search directories (-L) are technically linker “flags”, but they
are allowed in LDLIBS, too.



6 Developing

6.1 Debugging XCSoar

The XCSoar source repository contains a module for the GNU
debugger (gdb). It contains pretty-printers for various XCSoar
types, including Angle, GeoPoint and others. These are help-
ful when you print values in the debugger. To use it, start the
debugging session and load the module:

$ gdb -ex "source tools/gdb.py" output/UNIX/xcsoar

(gdb) run

The module will automatically convert fixed-point to floating
point, radian angles to degrees and more. You can now do
fancy stuff like:

(gdb) p basic.location

$1 = GeoPoint(7.93911242887 51.1470221074)

(gdb) p basic.date_time_utc

$2 = DateTime(2012/12/23 21:41:57)

(gdb) p basic.track

$3 = 55.2254197961

(gdb) p basic.external_wind

$4 = GeoVector::ZERO

(gdb) p current_leg.vector_remaining

$5 = GeoVector(267.899420345 107957.109724)



7 User interface guidelines

7.1 General

• Minimise the number of colours, and re-use colour groups
already defined.

• Too much use of colour where it is not required serves
only to reduce the effectiveness of bright colours for im-
portant items.

• High colour saturation elements should be reserved for
high importance items

• High contrast against background should be reserved for
high importance items

• Attempt to adopt colours that are intuitive based the
function of the item

• Minimise the clutter where possible — readibility is es-
sential for use in flight

• Use colours defined in Graphics according to functional
name, not their actual colour.

• Try to maintain consistent use of colours in all uses of
that function, such as dialogue graphics as well as map
overlays and infoboxes.

• Text should always be monochrome.

Use aviation conventions or adopt best aviation human factors
standards where possible, in particular:

• ICAO Internation Standards and Recommended Prac-
tices, Annex 4 to the Convention on International Civil
Aviation (Aeronautical Charts).

• NASA Colour Usage recommendations and design guide-
lines: http://colorusage.arc.nasa.gov/

• DOT/FAA/AR-03/67 Human Factors Considerations in
the Design and Evaluation of Electronic Flight Bags (EFBs)
http://www.volpe.dot.gov/hf/aviation/efb/docs/efb_version2.pdf

• FAA Human Factors Design Standards http://hf.tc.faa.gov/hfds/.



XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

• DOT/FAA/AM-01/17 Human Factors Design Guidelines
for Multifunction Displays

Check for performance with respect to colour blindness. This
site has a useful tool that can be used to convert screenshots to
how they would look to a person with common color blindness:
http://www.etre.com/tools/colourcheck/.

For safety purposes, avoid use of elements that may
encourage or require the user to stare at the screen
continuously.

For safety purposes, avoid user controls that have sig-
nificant risk of producing unsafe results if misconfig-
ured by the pilot.

7.1.1 General colour conventions

Colour conventions generally in use throughout the program:

• Red for indicator of warning

• Orange for indicator of caution

• Green for positive indicator of safety

• Blue for neutral indicator of safety

7.1.2 Displayed data

• Where data is invalid, indicate this by not presenting the
data or showing dashes.

• Present data in user-defined units.

• Display numerical data with significant digits appropri-
ate to the accuracy of the calculations, or its functional
use by the pilot, whichever is lower.

7.2 Dialogs and menu buttons

7.2.1 Colors

Colour conventions in use are:

• Grey for buttons

• Buttons and other widgets rendered with an evenly shaded
border

• Yellow for clicked items

• Light blue for the key focused item

25



XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

• Medium blue for dialogue title bar

• Text is black if the item is enabled

• Text is greyed out (but still visible) if the item is disabled

7.2.2 dialogue types and navigation buttons

There are four types of dialogs in XCSoar, and the navigation
buttons for each are different. Navigation buttons are the
Close, OK, Cancel and Select buttons.

• Dialogs that modify and save data when the dialogue
closes.

These shall usually have a Close button (no Cancel) and
may have context specific function buttons

• Dialogs that modify data where Cancel would be impor-
tant for the user.

These shall have OK and Cancel buttons. This may in-
clude dialogs with children dialogs where hitting Cancel
from the parent dialogue cancels all the changes made in
the children dialogs

• Dialogs that have a list of values, one of which can be
selected to return to the parent dialogue.

These shall have Select and Cancel buttons

• Dialogs that display information that cannot be modi-
fied.

These shall have a Close button

7.2.3 dialogue button placement and size

• The Close and Cancel buttons will never appear in the
same dialogue and are always located in the same place.
This location will be:

For portrait: lower right

For landscape: lower left

• The Select button will be accompanied with a Cancel
button. The locations will be:

For portrait: Select in lower left, Cancel in lower right

For landscape: Cancel in lower left, Select immediately
above it

26



XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

• Buttons will be 35 (scaled) pixels high

• Buttons will be flush with the bottom of the screen and
with the sides of the screen and against each other (no
margins)

• In portrait, buttons will be 33

• In landscape, buttons will be 65 to 80 (scaled) pixels
wide, as wide as the frame permits. They will generally
be a vertical row of buttons flush left of the screen

• If text won’t fit on a button, the buttons can be made
larger consistently for a screen, but this should be the
exception because if it must contain that much text con-
sider using a different type of control.

• Exceptions to all the dialogue concepts above are en-
couraged, but should be mocked up and reviewed with
the development community prior to implementing and
possibly documenting in the developers guide.

7.2.4 Usability

• Minimum size of buttons should be X by Y mm

• Ensure all dialogs are navigable using cursor keys only

• Ensure the focussed item is clearly identified. The rect-
angle of the widget on the canvas may be drawn using
the fill_focus method of Canvas.

7.3 Main graphics

7.3.1 Colors

Colour conventions in use, in order of priority, are:

• Aircraft black and white, for neutrality but clear identi-
fication

• Traffic (FLARM) use alarm green, orange, and red.

• Lift is vibrant green, sink is copper orange.

• Aircraft navigation (route, best cruise track) is (ICAO)
dark purple-blue

• Task navigation lines and areas are (ICAO) magenta.

• Updraft sources and other updraft derived data is sky
blue.

27



XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

(Todo) airspace alert colours

Map culture (topography) and terrain rendering should con-
form to ICAO Annex 4 where appropriate. Note that some
modifications are reasonable for electronic use given that An-
nex 4 deals with paper charts. Nevertheless, the colour con-
ventions are useful to adopt as they are likely to be intuitive
and are designed for aviation use.

7.3.2 Pen styles

• Map culture should be rendered with a thin pen

• Thicker pens used for important (e.g. task, navigational,
airspace) lines

• Dashed lines are used to increase perceptual priority

7.3.3 Map overlays

Elements on the map that are not part of the map layer,
such as additional informational widgets (final glide bar, wind,
north arrow) should be rendered so as to help those elements
be visually separated from the map:

• Generally adopt higher contrast (higher colour satura-
tion or darker shade) than the background map layer
elements.

• For elements covering an area (non line), draw the entire
element or a border with a luminosity contrasting pen,
of width IBLSCALE(1).

• Consider whether the widget is required in all flying
states and display modes. if it does not serve a direct
functional purpose in some states/modes, do not render
it.

• Avoid locating widgets at the aircraft symbol (ownship
symbol). It is important to keep this area clear so the
aircraft symbol can be easily found.

Elements that may be rendered over each other should be or-
ganised in order of priority, particularly with alert warning
items above caution items above non-alert items.

28



XCSoar Developer Manual 7. USER INTERFACE GUIDELINES

7.4 Terminology

7.4.1 Glide Ratio

’Glide ratio’ is a non-specific term which can refer to the ratio
of horizontal to vertical motion with reference to either the
surrounding airmass or the ground.

To reduce confusion, ground-referenced glide ratios (eg dis-
tance travelled over ground vs altitude lost) should be referred
to by the term ’glide ratio over ground’ when space allows, or
’glide ratio’ / ’GR’.

Air-referenced glide ratios (eg airspeed vs sink rate) should be
specified as ’lift/drag ratio’ / ’L/D ratio’ / ’LD’. The lift/drag
ratio is numerically equal to the air-referenced glide ratio when
flying at constant speed.

If usage spans both air-referenced and ground-referenced glide
ratios, the non-specific term ’glide ratio’ / ’GR’ should be
used. ’Lift/drag ratio’ should never be used to refer to ground-
referenced glide ratios.

29



8 File formats

8.1 Input Events

8.1.1 Introduction

The Input System is actually a large number of things all
bunched into one.

Primarily it is about giving the user control of what button
does what and when. There is a new concept called Input
Mode - this is a the mode the GUI is in for input. For example,
you can click on the info boxes and you are now in ”infobox”
mode. Clicking on the map is called ”default”. But it doesn’t
stop there, you can create a new mode called anything you
like. This may not mean much - but wait till you combine it
with the rest of the features...

Input is not restricted to hardware buttons any more. You can
map all your hardware buttons (currently support for APP1
to APP6, Left, Right, Up, Down and Enter, although I be-
lieve we can do some more) but also any key code at all. This
feature allows those with a built in keyboard to use any key
to map to any function in XCS. Where it comes into real ad-
vantage is in external keyboards. There are a number of blue-
tooth devices out there (eg: http://shop.brando.com.hk/

btgamepad.php) which can map each of their buttons to any
key code - that key code can then be mapped to any feature in
XCS. You can then add to the hardware buttons the buttons
available to you on external devices. Other inputs (eg: Serial)
are also being looked at - and support is in the code for that
extension.

We are striving towards a platform which is not only easier
to use and more intuitive, but also faster and easier to use in
flight as well. As such, another new feature as part of input
is the concept of Button Labels. Combined with the modes
mentioned above, you can create any arbitrary set of functions
to map to any number of buttons. Think about it like creating
a tree, or a multiple level menu.

This produces two benefits that I know will be appreciated by
people with limited inputs. The first is that you can create

http://shop.brando.com.hk/btgamepad.php
http://shop.brando.com.hk/btgamepad.php


XCSoar Developer Manual 8. FILE FORMATS

menus, where by you press one button to get to the next level
(eg: pressing on APP1 brings up AutoZoom, Pan Mode, Full
screen on the other buttons. Press APP1 again and it goes to
Terrain, Marker and Auto MacCready. Press APP1 again and
the menu is gone) - but more importantly for those with touch
screens and limited buttons, each of these labels can optionally
be assigned a key and you can touch the button area as if it
was a button. This means that we can actually control on a
touch screen model the entire system without buttons - press
an area of the screen and the buttons pop up, click through -
change options and more.

The combined features of labels, configurable buttons (includ-
ing from external hardware), hierarchical menus (for lack of a
better name), touch screen buttons has allowed us to configure
XCS - without recompile - for an enormous range of hardware,
and personal preference. And all configurable as plane text,
simple files. There is no need for a file, the defaults internally
will probably be a combination of a 4 button bottom system
with one button always shown on screen for no/few button
display.

The screen layout - location of the labels - is also totally con-
figurable - allowing us to vary the layout of buttons depending
on the type of organiser or desired look and feel.

There is a great unexpected benefit in the development of the
input system.

We can execute any number of events attached to an input
with only 2 extra lines of code. This worked perfectly. So now
we have a basic macro system, allowing many more events to
be attached to a single input event.

But it doesn’t stop there, this has lead to some more excellent
developments. The idea of Glide Computer Events things like
”Maximum Altitude Reached”. Currently we play a sound
effect for that. But you may choose to play a sound, bring up
a message box and write to the log file.

One nice feature of XCS is the ability to change things such
as Zoom and North when Circling. Now you can do so much
more. You could choose to point North, Zoom to 1.0 (rather
than a relative change), Turn on Vario Sounds, Start a timer.
When switching back to Cruise mode, you can bring up the
stats box for 30 seconds. The options are limited by your
imagination.

This is also contributing to a major reduction in complex code.

31



XCSoar Developer Manual 8. FILE FORMATS

We can move out these complex tests into one centrally, easier
to manage system, reducing bugs and improving maintainabil-
ity.

Another side benefits of these Macros is User Defined Flight
Modes. One idea was a button which switched to Zoom 1.0,
Pan ON, Pan Move to Next Waypoint. Basically the ability
to jump and see the next waypoint. And in the previous we
can change the Input Mode to ”ViewWaypoint” - at which
point you can redefine the same button to switch back to your
original settings.

The flexibility of this system comes with only one small price.
We can’t provide an interface within XCS to fully customise all
of these near infinitely variable possibilities. However I believe
that is unnecessary anyway, you are not likely to change these
sort of features very often, and definitely not on the field. That
does not mean you can’t, you can of course edit the plane(sic)
text file to change functions.

What this really means is that we can have people in the
project helping and contributing to the customising of XCS,
without having to change the code. This, especially on an open
source project is fantastic as it nicely separates the user inter-
face changes from the highly reliable part of the code. It also
involves people who can develop new interfaces and functions
that are expert gliders but not necessarily programmers.

For information on file formats see Common/Data/Input/template.xci
and the web site documentation.

8.1.2 Defaults and Files

The file in the source Common/Data/input/template.xci is
used to generate automatically the C code necessary for the
default configuration. However it is in the exact same format
as can be read in by XCS and therefore can be used literally
as a template for a more complicated file.

When you create your own file, you will need to select it as
the Input File within XCSoar Menu/Settings/Input Files, and
then restart XCS.

8.1.3 File format

The file is plain text, with key=value pairs and a blank line to
indicate the end of a record.

mode=default

32



XCSoar Developer Manual 8. FILE FORMATS

type=key

data=APP1

event=StatusMessage My favorite settings are done

event=ScreenModes full

event=Sounds on

event=Zoom 1.0

event=Pan off

label=My Prefs

location=1

The record above demonstrates remapping the first hardware
key on your organiser to change Pan to off, Zoom to 1.0 Sounds
on, ScreenModes full, and then a status message to tell you it
is done.

Lines are terminated by the stanard DOS newline which is
CRLF (Carrage Return then Line Feed). Records are termi-
nated by an extra new line.

8.1.4 Event order

Until further work is done on processing, events are actually
done in reverse order - also known as RPN. This is because the
events work on the stack principle. Each one is pushed onto
the stack for execution, and then executed by popping back
off the stack. This has reduced complexity of the code base.

When writing input events, have a look where you put the
StatusMessage and make sure that it is at the top, not the
bottom (if you have one).

33



XCSoar Developer Manual 8. FILE FORMATS

8.1.5 Event list

Event Description

ChangeInfoBoxType C Possible arguments: next, previous.
MainMenu

MarkLocation Mark a location.
Mode M Set the screen mode.
Pan P Control pan mode. Possible arguments: on

(enable pan), off (disable pan), up, down, left,
right

PlaySound S Play the specified sound.
SelectInfoBox S Possible arguments: next, previous.
SnailTrail S Change snail trail setting. Possible argu-

ments: off, short, long, show.
ScreenModes M Set the screen mode. Possible arguments: nor-

mal, auxilary, toggleauxiliary, full, togglefull,
toggle.

Sounds S Change vario sounds. Possible arguments:
toggle, on, off, show.

StatusMessage M Display the specified status message.
Zoom Z Everything about zoom of map. Possible ar-

guments: auto toogle, auto on, auto off, auto
show, in, out, +, ++, -, –.

8.1.6 Modes

XCSoar now has the concept of Modes. These are an arbitrary
string that associates with where and what XCS is doing.

Note: a mode entry in a record can have multiple entries by
using a space between eg: ”infobox menu1 menu2”

List of known modes

default : Really map mode, where you mostly are

infobox : An info box has been selected on the scrreen

* : Any other arbitrary string

Mode precedence has been tricky, so instead of solving the
problem it is being worked around. XCS will choose to set a
global variable to specify what mode it thinks it is in. This
can then be used by the input code to decide what to do. This
mode could get out of sink with the real world, and careful
checking will be required, but at this stage it seems like the
only sensible option.

The code will review first if an entry exists in the current mode,
and then in the default mode. This allows you to do one of
the following example: Define a default action for button ”A”
to be ”Zoom In” but make that button increase Bugs value in

34



XCSoar Developer Manual 8. FILE FORMATS

infobox mode only. You can do this by making an ”default”
and a ”infobox” entry. You can also put an entry in for Button
”A” for every mode and have complete control.

Special Modes - eg: the level of a menu (Think File vs Edit,
vs Tools vs Help)

have special modes, such as the level of the menu you are
at. You press one button, then another set become available
(like pressing menu and seeing Settings etc). This will be very
useful in non-touch screen models. The menu configuration
can then be read from this same file and configured, allowing
any number of levels and any number of combinations.

The only hard part is what mode to go back to. We need
a ”Calculate Live Mode” function - which can be called to
calculate the real live mode (eg: finalglide vs curse) rather
than the temporary mode such as Menu, Special Menu Level,
Warning etc.

The label and location values are examples of what can be done
here to allow input button labels to be displayed. What needs
to be considered is a simple way of mapping the locations and
the size. In some models it may be that buttons are 4 across
the top of the screen, where as others it is 3 or 2 or even 6. So
both size and location needs to be considered.

The label itself will go through gettext to allow language trans-
lations.

8.1.7 Keys

The key type can have the following possible values:

APP1-APP6 : Hardware key on pocket pc

F1-F12 : Standard function keys

LEFT, RIGHT, UP, DOWN, RETURN : Mapped to arrow keys - joystick on organisers

A-Z, 0-9 : and other possible keyboard buttons (case is ignored)

XXX Review... Input Types

Types:

hardware These are the standard hardware buttons on normal
organisers. Usually these are APP1..6.

keyboard Normal characters on the keyboard (a-z etc)

nmea A sentence received via NMEA stream (either)

35



XCSoar Developer Manual 8. FILE FORMATS

virtual Virtual buttons are a new idea, allowing multiple but-
tons to be created on screen. These buttons can then be op-
tionally mapped to physical buttons or to a spot on the screen
(probably transparent buttons over the map).

Modifiers

It is a long term goal of this project to allow modifiers for keys.
This could include one of the following possibilities:

• Combination presses (although not supported on many
devices)

• Double Click

• Long Click

Modifiers such as the above will not be supported in the first
release.

Functions/Events - what it does

AutoZoom on, off, toggle FullScreen on, off, toggle SnailTrail
on, off, long, toggle VarioSound on, off Marker optional text
to add MenuButton on, off, toggle Menu open, close, toggle
MenuEntry task, b+b, abortresume, abore, resume, pressure
logger, settings, status, analysis, exit, cancel NOTE: Some of
the above may be separate functions Settings (each setting,
bring up to that point) Bugs add, subtract, 0-100Ballast add,
subtract, 0-100Zoom add, subtract, 0-nn (set value) Wind up,
down, 0-nn (set value, left, right, ”n”,”ne”,”e”,”se”,”s”,”sw”,”w”,”nw”...
MacCready add, subtract, 0-nn (set value) WaypointNext ”String”
to specific waypoint eg: WayPointNext ”home” WayPoint???
”reverse” - reverse, from last passed back to start (ie: from here
to home) ”drop next” - drop the next ”restore” - restore all -
from start of flight but XXX This needs more thought flight
”startstop”, ”start”, ”stop”, ”release” Start/Stop of flight -
Can be automatic, but pressing will override automatic part.
release markse the point of release from tow

8.1.8 Glide Computer Events

These are automatically triggered events. They work in ex-
actly the same way, but instead of the user pressing a key, the
glide computer triggers the events.

A simple example is moving from Cruise to Climb mode. We
want to zoom in, change our track up to north up and switch
to full screen. You may also choose to drop a marker with
the words ”entered thermal”. The choicese are up to your

36



XCSoar Developer Manual 8. FILE FORMATS

imaginations - the GCE (Glide Computer Events) allow you
to control what happens.

These are represented as ”type=gce” and data=* - as listed
below.

Event Description

COMMPORT_RESTART The comm port is restarted.
FLIGHTMODE_CLIMB The flight mode has switched to

“climb”.
FLIGHTMODE_CRUIS The flight mode has switched to

“cruise”.
FLIGHTMODE_FINALGLIDE The flight mode has switched to “fi-

nal glide”.
GPS_CONNECTION_WAIT Waiting for the GPS connection.
GPS_FIX_WAIT Waiting for a valid GPS fix.
HEIGHT_MAX Maximum height reached for this

trip.
LANDING You are at landing.
STARTUP_REAL First message - this happens at

startup of the real XCS.
STARTUP_SIMULATOR Startup first message. This happens

during simulator mode.
TAKEOFF You have taken off.

8.2 Topography layer description file

Each line of the topography layer description file (topogra-
phy.tpl) contains a comma seperated list (CSV) of information
needed for rendering of an individual topography layer. Lines
starting with ’*’ are ignored.

Column name Data type Valid range

filename string
range double -
icon string
label index - -
color (red component) int 0-255
color (green component) int 0-255
color (blue component) int 0-255
pen width int 0-31
label range double -
important label range double -

Table 8.1: Topography file format

filename : The filename of the Topography layer within the con-
tainer file.

37



XCSoar Developer Manual 8. FILE FORMATS

icon : XCSoar v6.5 and earlier, used only for town icons (219).
From XCSoar v6.6, the name of the icon to display. Op-
tional.

range : A threshold zoom level. All layer elements will not be
drawn below this threshold.

pen width : Lines contained within this layer are drawn with pen
width.

label range : A threshold zoom level. Labels contained in the layer
file will not be rendered below this threshold.

important label range : A threshold zoom level. Labels contained in the layer file
will be rendered in standard style below this threshold.

8.2.1 Point Features

From XCSoar v6.6, a user can put an optional string into the
icon column in topology.tpl in the .XCM file (e.g.)

• SpotHeight,5,mountain top,1,64,64,64,1,5,

• Mast,10,obstacle,,,,,1,10,

This can be used for Shapefiles containing point features or
polygons or linestrings, but is probably only useful for point
features.

The icon of the corresponding image and optional label will
be displayed. In the first example, the ”mountain top” icon
and a label will be displayed for each point in the SpotHeight
shapefile. My SpotHeight Shapefile has been generated with
the point elevation in feet as the label value). For the second
example, only ”obstacle” icons (no labels) will be displayed for
points in the Mast Shapefile..

Icon names are detected in TopographyStore.cpp. Names must
be given in lowercase. If the icon name given is unknown, or
no icon name is given, then icons are not displayed for that
Shapefile.

Names correspond to images which have been linked into XC-
Soar, although it is envisaged that in future these will be names
of icon files. Available icon names are:

• mountain top

• bridge

• tunnel

• tower

38



XCSoar Developer Manual 8. FILE FORMATS

• power plant

• obstacle

• mountain pass

• weather station

• thermal hotspot

• town

• mark

• turnpoint

• small

• cruise

• terrainwarning

• logger

• loggeroff

• target

• teammate pos

• airspacei

• traffic safe

• traffic warning

• traffic alarm

• taskturnpoint

• marginal

• landable

• reachable

• airport reachable

• airport unreachable

• airport marginal

• airport unreachable2

• airport marginal2

• outfield unreachable2

• outfield marginal2

39



XCSoar Developer Manual 8. FILE FORMATS

• outfield reachable

• outfield unreachable

• outfield marginal

8.2.2 Adding new Icons

At the moment, adding new icons requires a rebuild of the
XCSoar application.It is envisaged that, in future, this process
won’t be required... users will include icon files in their .XCM
map container files, and refer to them by name. However, that
has not yet been implemented.

To add your own images to the list of icons:

1. Create a .svg file for the icon (e.g. mast.svg) and copy
into xcsoar/Data/icons. For Android, the name must
be lowercase.

2. Insert two (for normal and high-res) lines into xcsoar/Data/XCSoar.rc,
(e.g.)

BITMAP\_ICON(IDB\_MAST, "mast")

BITMAP\_ICON(IDB\_MAST\_HD, "mast\_160")

3. Insert two lines into xcsoar/src/resource.h (e.g.)

\#define IDB\_MAST 500

\#define IDB\_MAST\_HD 5500

4. Add a corresponding line into the icon list table in
xcsoar/src/Topography/TopographyStore.cpp

{"mast", IDB\_MAST},

5. Make XCSoar

After this, a line can be added in topology.tpl to connect
the icon to the Shapefile using the icon name. (e.g.)

Mast,10,mast,,,,,1,10,

Note that unless these changes are merged into the main XC-
Soar repository, then only your specific build of XCSoar will
be able to display your icon image.

40



Appendix A GNU General Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your free-
dom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foun-
dation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is cov-
ered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.



XCSoar Developer ManualAPPENDIX A. GNU GENERAL PUBLIC LICENSE

Also, for each author’s protection and ours, we want to make cer-
tain that everyone understands that there is no warranty for this
free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone’s free use or not
licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which con-
tains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public Li-
cense. The ”Program”, below, refers to any such program or
work, and a ”work based on the Program” means either the
Program or any derivative work under copyright law: that
is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included with-
out limitation in the term ”modification”.) Each licensee is
addressed as ”you”.

Activities other than copying, distribution and modification
are not covered by this License; they are outside its scope.
The act of running the Program is not restricted, and the
output from the Program is covered only if its contents con-
stitute a work based on the Program (independent of having
been made by running the Program). Whether that is true
depends on what the Program does.

2. You may copy and distribute verbatim copies of the Pro-
gram’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other re-
cipients of the Program a copy of this License along with the
Program.

42



XCSoar Developer ManualAPPENDIX A. GNU GENERAL PUBLIC LICENSE

You may charge a fee for the physical act of transferring a
copy, and you may at your option offer warranty protection
in exchange for a fee.

3. You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet
all of these conditions:

(a) You must cause the modified files to carry prominent
notices stating that you changed the files and the date
of any change.

(b) You must cause any work that you distribute or pub-
lish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the
terms of this License.

(c) If the modified program normally reads commands in-
teractively when run, you must cause it, when started
running for such interactive use in the most ordinary
way, to print or display an announcement including an
appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program un-
der these conditions, and telling the user how to view
a copy of this License. (Exception: if the Program it-
self is interactive but does not normally print such an
announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole.
If identifiable sections of that work are not derived from
the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its
terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Pro-
gram, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on
the Program with the Program (or with a work based on the

43



XCSoar Developer ManualAPPENDIX A. GNU GENERAL PUBLIC LICENSE

Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based
on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you
also do one of the following:

(a) Accompany it with the complete corresponding machine-
readable source code, which must be distributed under
the terms of Sections 1 and 2 above on a medium cus-
tomarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least
three years, to give any third party, for a charge no
more than your cost of physically performing source
distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

(c) Accompany it with the information you received as to
the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribu-
tion and only if you received the program in object code
or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the
work for making modifications to it. For an executable work,
complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source
code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by of-
fering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the
object code.

5. You may not copy, modify, sublicense, or distribute the Pro-
gram except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your
rights under this License. However, parties who have re-
ceived copies, or rights, from you under this License will not

44



XCSoar Developer ManualAPPENDIX A. GNU GENERAL PUBLIC LICENSE

have their licenses terminated so long as such parties remain
in full compliance.

6. You are not required to accept this License, since you have
not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the
Program or works based on it.

7. Each time you redistribute the Program (or any work based
on the Program), the recipient automatically receives a li-
cense from the original licensor to copy, distribute or modify
the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exer-
cise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of
patent infringement or for any other reason (not limited to
patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the con-
ditions of this License, they do not excuse you from the con-
ditions of this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution
of the Program by all those who receive copies directly or
indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section
is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe
any patents or other property right claims or to contest va-
lidity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution
system, which is implemented by public license practices.
Many people have made generous contributions to the wide
range of software distributed through that system in reliance
on consistent application of that system; it is up to the au-
thor/donor to decide if he or she is willing to distribute soft-

45



XCSoar Developer ManualAPPENDIX A. GNU GENERAL PUBLIC LICENSE

ware through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is
believed to be a consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted inter-
faces, the original copyright holder who places the Program
under this License may add an explicit geographical distribu-
tion limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if
written in the body of this License.

10. The Free Software Foundation may publish revised and/or
new versions of the General Public License from time to time.
Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which
applies to it and ”any later version”, you have the option of
following the terms and conditions either of that version or of
any later version published by the Free Software Foundation.
If the Program does not specify a version number of this
License, you may choose any version ever published by the
Free Software Foundation.

11. If you wish to incorporate parts of the Program into other
free programs whose distribution conditions are different,
write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

No warranty

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BYAPPLICABLE LAW. EXCEPTWHEN
OTHERWISE STATED INWRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF

46



XCSoar Developer ManualAPPENDIX A. GNU GENERAL PUBLIC LICENSE

THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NEC-
ESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW
ORAGREED TO INWRITINGWILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAMTOOPERATEWITH ANYOTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

47


	Introduction
	Compiling XCSoar
	Getting the Source Code
	Requirements
	Target-specific Build Instructions
	Compiling for Linux/UNIX
	Compiling for Android
	Compiling for Windows
	Compiling for Windows CE
	Compiling for Mac OS X
	Compiling for the Raspberry Pi
	Compiling for Kobo E-book Readers

	Options
	Parallel Build
	Optimised Build


	Policy
	Writing Patches
	Code Style
	C++
	Features
	Other rules

	Graphical User Interface
	Letter Cases


	Architecture
	Source Organisation
	Threads and Locking
	Threads
	Locking

	Accessing Sensor Data

	The build system
	Linker parameters

	Developing
	Debugging XCSoar

	User interface guidelines
	General
	General colour conventions
	Displayed data

	Dialogs and menu buttons
	Colors
	dialogue types and navigation buttons
	dialogue button placement and size
	Usability

	Main graphics
	Colors
	Pen styles
	Map overlays

	Terminology
	Glide Ratio


	File formats
	Input Events
	Introduction
	Defaults and Files
	File format
	Event order
	Event list
	Modes
	Keys
	Glide Computer Events

	Topography layer description file
	Point Features
	Adding new Icons


	GNU General Public License

